МЕГАОММЕТРЫ ЦС0202

Руководство по эксплуатации Ба 2.722.062 РЭ

Настоящее руководство по эксплуатации предназначено для ознакомления обслуживающего персонала с устройством и принципом работы цифровых мегаомметров ЦС0202 (в дальнейшем – мегаомметр) и содержит сведения, необходимые для их правильного использования при эксплуатации, технического обслуживания, хранения и транспортирования.

Перед включением мегаомметра и использованием его по назначению, внимательно ознакомьтесь с настоящим руководством по эксплуатации и соблюдайте все рекомендации, приведенные в нем.

К работе с мегаомметром должны допускаться лица с группой допуска по электробезопасности не ниже III.

Мегаомметр внесен в Государственный реестр средств измерительной техники допущенных к применению в Украине. Регистрационный № У2670-08.

Сведения о сертификации мегаомметра приведены в приложении А.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение

- **1.1.1** Мегаомметр предназначен для измерения электрического сопротивления изоляции постоянному току и напряжения переменного тока, а также диагностики состояния изоляции электрических цепей, не находящихся под напряжением.
- **1.1.2** Мегаомметр изготавливается в соответствии с требованиями ГОСТ 22261-94 «Средства измерений электрических и магнитных величин. Общие технические условия» и ТУ У 33.2-00226106-011:2008 «Мегаомметры ЦС0202. Технические условия».
- **1.1.3** Мегаомметр, в зависимости от температуры окружающего воздуха рабочих условий применения, имеет исполнения:
- ЦС0202-1 температура окружающего воздуха рабочих условий применения от минус 10 °C до плюс 55 °C;
- ЦС0202-2 температура окружающего воздуха рабочих условий применения от минус 30 °C до плюс 55 °C.
- **1.1.4** Нормальные условия применения мегаомметра по ГОСТ 22261 и 5.5.1 руководства по эксплуатации.
- **1.1.5** По значению влияющих величин, характеризующих климатические воздействия, исполнение ЦС0202-1 относится к средствам измерительной техники группы 4, исполнение ЦС0202-2 к средствам измерительной техники группы 5 по ГОСТ 22261, но с расширенным диапазоном рабочей температуры от минус 30 °C до плюс 55 °C.

По механическим воздействиям рабочих условий применения и предельных условий транспортирования, оба исполнения мегаомметра соответствуют требованиям к средствам измерительной техники группы 5 по ГОСТ 22261.

Предельные условия транспортирования мегаомметра: температура окружающего воздуха от минус 50 °C до плюс 70 °C, относительная влажность воздуха 95 % при температуре 35 °C.

1.2 Технические характеристики

- **1.2.1** Отсчет показаний мегаомметра цифровой. Буквенно-цифровая индикация на жидкокристаллическом дисплее исполнение ЦС0202-1 и на вакуумно-люминесцентном дисплее исполнение ЦС0202-2.
- **1.2.2** Электропитание мегаомметра аккумуляторы GP200AAHC (ЦС0202-1), GP270AAHC (ЦС0202-2) напряжением 1,2 В 8 шт. или блок питания 12 В, силой тока нагрузки 0,7 А.

В качестве источника электропитания допускается использовать автомобильный аккумулятор или источник постоянного тока напряжением от 9,8 В до 12 В соблюдая полярность подключения.

- **1.2.3** Сила тока потребления мегаомметра от аккумуляторов не более 0,5 A (исполнение ЦС0202-1) и не более 0,7 A (исполнение ЦС0202-2).
- **1.2.4** Измерительное напряжение мегаомметра от 100 B до 2500 B с дискретностью установки 50 B.
- **1.2.5** Диапазон показаний мегаомметра от 0 до 200 ГОм. Если измеряемое сопротивление изоляции больше 200 ГОм, на дисплее появится запись $R > 200 \text{ G}\Omega$.
 - 1.2.6 Максимальное значение силы тока в цепи измеряемого сопротивления 2 мА.
- **1.2.7** Диапазон измерения сопротивления изоляции от 200 кОм до 100 ГОм на поддиапазонах:
 - от 200 кОм до 1 ГОм при измерительных напряжениях от 100 B до 950 B;
 - от 2,5 MOм до 100 ГОм при измерительных напряжениях от 1000 B до 2500 B.
 - 1.2.8 Режимы работы при измерении сопротивления изоляции:
- автоматический (1 измерение за 60 с после кратковременного нажатия кнопки ИЗМ);
- ручной (непрерывные измерения на протяжении удерживания кнопки ИЗМ в нажатом положении);
- режим измерения сопротивления изоляции объекта с большой собственной электрической емкостью (до 0,5 мк Φ). Вход в режим одновременное нажатие кнопок R_X/K и УСТ.U.
- **1.2.9** Мегаомметр в автоматическом режиме работы измеряет значение сопротивления изоляции через 15 с и 60 с с момента приложения измерительного напряжения и рассчитывает коэффициент абсорбции изоляции $K_{abs}=R_{60}/R_{15}$, косвенно характеризующий состояние изоляции.
 - 1.2.10 Мегаомметр также осуществляет:
- измерение внешнего напряжения переменного тока среднеквадратического значения частоты 50 Γ ц в диапазоне от 40 B до 500 B с пределами допускаемой абсолютной основной погрешности \pm 12,5 B;
- блокировку проведения измерения сопротивления изоляции при наличии напряжения на измеряемом объекте свыше 40 В;
- сохранение в памяти результатов 10-ти последних измерений сопротивления изоляции, коэффициента абсорбции и измерительного напряжения, при которых проводились измерения;
- автоматическое отключение при снижении напряжения электропитания ниже 9,8 В (питание от внешнего источника) или после индикации БАТАРЕЯ РАЗРЯЖЕНА! при питании мегаомметра от аккумулятора;
 - автоматический разряд емкости объекта измерения;
- автоматическое отключение от источника питания за (1,5...2) мин по завершению измерения или после отпускания любой из кнопок управления;
 - индикацию степени заряда аккумуляторов;
 - подзарядку аккумуляторов при электропитании мегаомметра от блока питания.
 - 1.2.11 Время установления рабочего режима непосредственно после включения.
- **1.2.12** Продолжительность работы мегаомметра при электропитании от блока питания неограничена.

Количество измерений мегаомметром, при электропитании от аккумуляторов в автоматическом режиме измерения, не менее 500 в нормальных условиях применения.

- **1.2.13** Степень защиты по ГОСТ 14254-96 «Степени защиты, обеспечиваемые оболочками (код IP)» для мегаомметра IP42.
 - **1.2.14** Габаритные размеры 220 мм х 156 мм х 61 мм.
 - **1.2.15** Macca:
 - мегаомметра с аккумуляторами и комплектом шнуров не более 1,2 кг;
 - блока питания не более 0,3 кг.
 - 1.2.16 Мегаомметр относится к средствам измерительной техники класса точно-

- сти 2,5. Пределы допускаемой относительной основной погрешности измерения сопротивления изоляции равны \pm 2,5 % от измеряемого сопротивления.
- **1.2.17** Измерительное напряжение, создаваемое мегаомметром на объекте измерения сопротивлением более $10~\rm MOm$, не должно отличаться от установленного значения больше чем на $\pm\,10~\rm \%$.
- **1.2.18** Пределы допускаемой дополнительной относительной погрешности измерения сопротивления изоляции, вызванной изменением температуры воздуха от нормальной до любой в пределах рабочих температур, равны половине пределов относительной основной погрешности на каждые 10 °C изменения температуры.
- **1.2.19** Пределы допускаемой дополнительной погрешности измерения сопротивления изоляции, вызванной изменением относительной влажности окружающего воздуха до 90 % при температуре 30 °C, равны пределам относительной основной погрешности.
- **1.2.20** Пределы допускаемой дополнительной относительной погрешности измерения сопротивления изоляции, вызванной включением между контактом Э и любым другим измерительным контактом сопротивления равного $1 \Gamma Om$, равны $\pm 2,5 \%$.
- **1.2.21** Время установления показаний мегаомметра, после окончания формирования измерительного напряжения, не более 15 с.
- **1.2.22** Мегаомметры ударопрочные и выдерживают механические удары многократного действия с ускорением $150~\text{m/c}^2$, длительностью импульсов 6 мс. Количество ударов – 4000.
 - 1.2.23 Средняя наработка на отказ не менее 10000 ч.
 - **1.2.24** Средний срок службы 10 лет.

1.3 Состав изделия

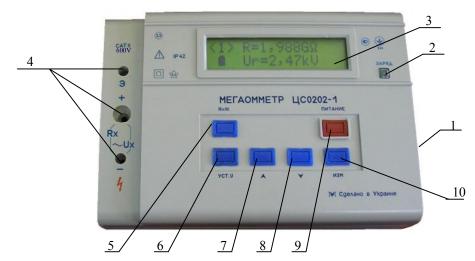

1.3.1 Комплект поставки мегаомметра приведен в таблице 1.1.

Таблица 1.1

Наименование	Количество	Примечание	
Мегаомметр ЦС0202-1 (ЦС0202-2)	1 шт.		
Сумка Ба4.165.009	1 шт.		
Руководство по эксплуатации Ба2.722.062 РЭ	1 экз.		
Шнур Ба6.640.383	1 шт.		
Шнур Ба6.640.384	1 шт.	экранированный	
Проводник Ба6.640.385	1 шт.		
Блок питания 12 B, ток нагрузки 0,7 A	1 шт.		
Аккумулятор, типоразмер АА; 1,2 В	8 шт.	в отсеке питания или в	
		сумке	

1.4 Устройство и работа

1.4.1 Мегаомметр выполнен в корпусе из ударопрочной пластмассы. Внешний вид мегаомметра приведен на рисунке 1.1.

- 1 гнездо подключения внешнего источника электропитания центральный контакт «плюс»;
 - 2 индикатор подзарядки аккумуляторов;
 - 3 дисплей;
- 4 измерительные контакты: 9 подключение проводника комплекта поставки, * подключение экранированного шнура, * подключение не экранированного шнура;
- 5 кнопка R_X/K индикация результатов измерения сопротивления изоляции (R_{15}) и коэффициента абсорбции текущего <0> и 9 предыдущих измерений;
- 6 кнопка УСТ.U вход в режим установки измерительного напряжения и выход из него:
- 7, 8 кнопки «▲», «▼» увеличение, уменьшение измерительного напряжения с дискретностью 50 В и извлечение из памяти результатов предыдущих измерений;
 - 9 кнопка ПИТАНИЕ включение мегаомметра и сброс;
 - 10 кнопка ИЗМ измерение сопротивления изоляции.

Рисунок 1.1 – Внешний вид мегаомметра

1.4.2 Принцип действия мегаомметра заключается в сравнении падений напряжений на измеряемом и эталонном сопротивлениях.

Разность выходных напряжений логарифмических усилителей пропорциональна логарифму отношения значений измеряемого и эталонного сопротивлений и не зависит от величины напряжения.

Аналоговая величина выходного напряжения усилителей преобразуется аналогоцифровым преобразователем (АЦП) в дискретную и индицируется на дисплее индикатора.

Работой АЦП и реализацией функций мегаомметра (1.2.10) управляет микроконтроллер.

1.5 Маркировка и пломбирование

1.5.1 На мегаомметре нанесены следующие знаки и символы:

– обозначение класса точности;

- напряжение испытательное, кВ;
- IP42 степень защиты, обеспечиваемая оболочкой;

– оборудование II класса защиты (электрическая цепь защищена усиленной изоляцией);

- товарный знак изготовителя;

- контакты подключения объекта измерения;

– полярность измерительного напряжения; CAT II - категория монтажа (категория перенапряжения) и максимальное рабо-

600 V чее напряжение;

=== 12 V - гнездо подключения внешнего источника питания;

– Внимание! (см. руководство по эксплуатации);

- высокое напряжение;

- знак утверждения типа средств измерительной техники Украины;

- знак соответствия типу средств измерительной техники Украины.

1.5.2 Пломбирование осуществляется мастикой с тыльной стороны корпуса в углублении крепежного отверстия.

1.6 Упаковка

1.6.1 Упаковка мегаомметра должна соответствовать ГОСТ 9181-74 «Приборы электроизмерительные. Упаковка, маркировка, транспортирование и хранение» и конструкторской документации Ба 2.722.062.

Мегаомметр упаковывается в индивидуальную упаковку (сумку) в комплекте по таблице 1.1. Сумку упаковывают в потребительскую тару (картонная коробка).

Упакованные мегаомметры при транспортировании укладывают в транспортную тару.

1.6.2 Транспортная тара, масса и габаритные размеры грузовых мест по конструкторской документации Ба 2.722.062.

При железнодорожных перевозках виды отправки – мелкие и малотоннажные.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Подготовка мегаомметра к использованию

- 2.1.1 Внимание! Перед первым включением мегаомметра после приобретения и после длительного перерыва в работе, необходимо произвести заряд аккумуляторов.
- 2.1.2 Для заряда аккумуляторов подключить блок питания из комплекта поставки к сети ~220 В, ответную часть подключить к мегаомметру. Индикатор ЗАРЯД сигнализирует о процессе заряда аккумуляторов.

Нажать кнопку ПИТАНИЕ. На дисплее высветится информация:

Рисунок 2.1

Оценить степень заряда аккумуляторов можно по заполнению изображения символа (питание мегаомметра от аккумуляторов):

– аккумуляторы разряжены,

аккумуляторы заряжены.

Рекомендуемое время заряда аккумуляторов от состояния полного разряда до состояния полного заряда – (12...15) часов (зависит от типа используемых аккумуляторов).

Отключить блок питания от сети ~220 В и, во избежание разряда аккумуляторов, от мегаомметра.

Если в процессе работы мегаомметра (при питании от аккумуляторов) произойдет разряд аккумуляторов, на дисплее высветится информация:

БАТАРЕЯ РАЗРЯЖЕНА!

Рисунок 2.2

Мегаомметр автоматически отключится.

2.2 Включение и отключение мегаомметра

2.2.1 Включение мегаомметра производится кратковременным нажатием кнопки ПИТАНИЕ.

Отключение мегаомметра происходит автоматически по истечении времени (1,5...2) мин после завершения измерения или с момента последней манипуляции кнопками управления.

2.3 Меры безопасности

2.3.1 По безопасности мегаомметр удовлетворяет требованиям ДСТУ ІЕС 61010-1:2005 «Вимоги безпеки до електричного устаткування для вимірювання, керування та лабораторного застосування. Частина 1. Загальні вимоги», ГОСТ Р 51350-99 «Безопасность электрических контрольно-измерительных приборов и лабораторного оборудования. Часть 1. Общие требования».*

Мегаомметр относится к изделиям категории монтажа (категории перенапряжения) II 600 В, степени загрязнения 2 по ДСТУ IEC 61010-1.

- **2.3.2** Мегаомметр имеет усиленную изоляцию. Класс защиты от поражения электрическим током II.
- **2.3.3** При эксплуатации мегаомметра необходимо руководствоваться требованиями ДНАОП 0.00-1.21-98 «Правила безпечної експлуатації електроустановок споживачів», ГОСТ 12.3.019-80 «Испытания и измерения электрические. Общие технические требования» и «Правилами безопасности при эксплуатации электроустановок потребителей».
- **2.3.4** Изоляция между измерительными контактами и корпусом мегаомметра испытана в течении одной минуты напряжением переменного тока 5,2 кВ (среднеквадратическое значение) частотой 50 Гц по ГОСТ Р 51350.
- **2.3.5** Сопротивление изоляции между закороченными измерительными контактами и корпусом мегаомметра не менее 40 МОм.
 - 2.3.6 Не допускается работать с мегаомметром если:
 - объект измерения не обесточен;
 - загрязнена поверхность корпуса в зоне измерительных контактов;
 - * Для мегаомметров, поставляемых в Российскую федерацию
 - загрязнены шнуры соединительные и их щупы;
 - имеются механические повреждения корпуса;
 - повреждена изоляция шнуров.
- **2.3.7** ВНИМАНИЕ! Использование шнуров, не предусмотренных комплектом поставки, может нарушить безопасность мегаомметра, а также привести к недостоверности результатов измерения.
- **2.3.8** При монтаже и демонтаже схемы измерения сопротивления изоляции избегайте касания неизолированных частей объекта измерения, измерительных контактов мегаомметра и токопроводящих контактов шнуров.
- **2.3.9** В отсек для аккумуляторов могут быть вставлены и подключены другие элементы питания типоразмера AA, в том числе и не подлежащие зарядке.

⚠ ЕСЛИ В ОТСЕК ДЛЯ АККУМУЛЯТОРОВ ВСТАВЛЕНЫ ЭЛЕМЕНТЫ ПИТАНИЯ, НЕ ПОДЛЕЖАЩИЕ ЗАРЯДКЕ, ПОДКЛЮЧЕНИЕ МЕГАОММЕТРА ЧЕРЕЗ БЛОК ПИТАНИЯ НЕ ДОПУСКАЕТСЯ!

2.4 Использование мегаомметра

2.4.1 Измерение напряжения переменного тока

2.4.1.1 Подключить измерительные шнуры из комплекта поставки к мегаомметру как показано на рисунке 2.3.

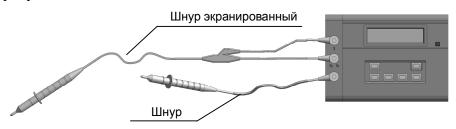


Рисунок 2.3

Соблюдая меры безопасности, ответную часть шнуров подключите к объекту. Включите мегаомметр – прибор находится в режиме измерения напряжения. На дисплее мегаомметра высветится информация (рисунок 2.1) или значение напряжения на объекте, если он не обесточен.

При необходимости перехода в режим измерения напряжения из других режимов работы мегаомметра необходимо нажать кнопку ПИТАНИЕ.

2.4.2 Измерение сопротивления изоляции

2.4.2.1 Подключить измерительные проводники и шнуры как показано на рисунке 2.4.

Рисунок 2.4

Подключение проводника к гнезду Э осуществляется для исключения влияния на результат измерения токов утечки между шнурами и токов утечки с объекта измерения на корпус, землю или экран.

2.4.2.2 Включить мегаомметр.

Если на объекте присутствует напряжение, то мегаомметр блокирует режим измерения сопротивления и при нажатии кнопки ИЗМ на дисплее высветится информация (см. рисунок 2.5), а при отпускании – значение напряжения на объекте.

НАПРЯЖЕНИЕ В ЦЕПИ ИЗМЕРЕНИЯ

Рисунок 2.5

Отсоедините проводники и шнуры от объекта и примите меры по устранению наличия напряжения на объекте.

Если напряжение отсутствует, можно проводить измерение сопротивления.

2.4.2.3 Войти в режим установки измерительного напряжения, нажав кнопку УСТ. U. На дисплее высветится информация:

УСТ.U: XXX V

где $XXX\ V$ – значение установленного измерительного напряжения предыдущего измерения.

Рисунок 2.6

При включении мегаомметр высвечивает значение установленного измерительного напряжения предыдущего измерения и сохраняет его в памяти на все время до следующей установки значения измерительного напряжения.

При помощи кнопок «▲» (увеличение) или «▼» (уменьшение) установить необходимое измерительное напряжение (при однократном нажатии происходит изменение значений напряжения на 50 В, а при удержании – автоматическое изменение значений с дискретностью 50 В). Выйти из режима установки напряжения повторным нажатием кнопки УСТ.U (если не произвести выхода из режима УСТ.U, то после нажатия кнопки ИЗМ на дисплее высветится информация)

ВЫЙТИ С РЕЖИМА УСТ.U

Рисунок 2.7

2.4.2.4 Провести измерение сопротивления изоляции для чего нажать и удерживать (ручной режим) или нажать и отпустить (автоматический режим) кнопку ИЗМ. На дисплее высветится информация:

АИНАВОЧИМЧОФ ВИНЭЖВЧПАН

Рисунок 2.8

Длительность формирования измерительного напряжения зависит от величины измеряемого сопротивления изоляции и установленного значения напряжения.

По окончании формирования установленного измерительного напряжения на сопротивлении на дисплее высветится информация:

ИДЕТ ИЗМЕРЕНИЕ

Рисунок 2.9

Через 15 с при измерении в ручном режиме, или через 60 с при измерении в автоматическом режиме измерения, высветится результат измерения:

<0> R =XXXX Ur = XXX

где R – измеренное значение сопротивления ($k\Omega, M\Omega, G\Omega$), U_R –измерительное напряжение на сопротивлении (V, kV).

Рисунок 2.10

В ручном режиме измерения в течение 15 с, после первого показания результата, происходит установление показаний. Достоверным результатом считаются показания по истечении времени установления показаний.

Внимание! При измерении малых величин сопротивлений изоляции (<10 МОм) напряжение Ur на этом сопротивлении может отличаться от установленного, так как напряжение распределяется между внутренним входным сопротивлением мегаомметра и измеряемым сопротивлением. В этом случае, если необходимо получить строго определенное значение измерительного напряжения на сопротивлении, нужно заведомо увеличивать установленное значение измерительного напряжения, однако следует учитывать

способность мегаомметра переходить в режим стабилизации тока на уровне 1 мA (напряжение на измеряемом сопротивлении R не может быть больше $I \cdot R = 0,001R$, B, где R-B омах).

В ручном режиме работы процесс измерения прекращается после отпускания кнопки ИЗМ, а в автоматическом – при появлении результата измерений на дисплее (см. рисунок 2.10).

Внимание! Если необходимо прервать процесс измерения, нажмите кнопку ПИ-ТАНИЕ.

Кроме результатов измерения R и Ur в левой части дисплея высвечивается порядковый номер измерения <0> (см. 4.6 «Чтение памяти») и изображение символа степени заряда аккумуляторов.

2.4.2.5 Для индикации коэффициента абсорбции нажать кнопку Rx/K. На дисплее высветится информация:

где K – коэффициент абсорбции (K_{abs}).

Рисунок 2.11

Коэффициент абсорбции K_{abs} рассчитывается после проведения измерения сопротивления изоляции в автоматическом режиме по формуле:

$$Kabs = \frac{R_{60}}{R_{15}} ,$$

где, R_{60} — сопротивление объекта через 60 с после подачи напряжения,

 R_{15} — сопротивление объекта через 15 с после подачи напряжения.

За R_{60} принимается результат измерения сопротивления (R) по 2.4.2.4 (см. рисунок 2.10).

При измерении сопротивлений изоляции в ручном режиме или в режиме работы на емкость сопротивление изоляции R_{15} и R_{60} не измеряется, а коэффициент абсорбции не рассчитывается и при нажатии кнопки Rx/K на дисплее высветится информация:

Рисунок 2.12

Для выхода из режима индикации K_{abs} необходимо повторно нажать кнопку Rx/K.

2.4.3 Измерение сопротивления изоляции объекта с большой собственной электрической емкостью (работа на емкость)

2.4.3.1 Для измерения сопротивлений с заведомо известной большой собственной емкостью (более 0,1 мкФ) предусмотрен режим «Работа на емкость».

О наличии большой емкости может свидетельствовать отличие напряжения на измеряемом сопротивлении больше чем на 10 % от заданного при проведении измерения сопротивления изоляции R>10 МОм в ручном или автоматическом режимах.

Для входа в режим необходимо нажать и отпустить одновременно кнопки Rx/K и УСТ.U.

На дисплее высветится информация:

РАБОТА НА ЕМКОСТЬ

Рисунок 2.13

Установить, при необходимости, измерительное напряжение и кратковременно нажать кнопку ИЗМ.

На дисплее высветится информация рисунка 2.8. Процесс формирования напряжения может достигать 4 мин и более. После окончания процесса измерения на дисплее высветится информация:

Рисунок 2.14

Для выхода из режима «Работа на емкость» необходимо повторно нажать одновременно кнопки Rx/K и УСТ. U или нажать кнопку ПИТАНИЕ.

Во избежание поражения электрическим током перед демонтажом схемы убедитесь в том, что емкость объекта разрядилась, нажав кнопку ПИТАНИЕ (на дисплее появится значение величины напряжения на объекте).

2.4.4 Чтение памяти

- **2.4.4.1** Мегаомметры сохраняют в памяти результаты последних 10 измерений, (R, Ur, K_{abs} , R_{15}). Последнему результату измерений присваивается номер <0>, предыдущему <1> и так далее до <9>.
- 2.4.4.2 Для просмотра памяти пользуйтесь кнопками «▼» или «▲» после включения мегаомметра или после получения результата текущего измерения.

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- **3.1** Техническое обслуживание сводится к соблюдению правил эксплуатации, хранения и транспортирования мегаомметра.
- **3.2** Ремонт мегаомметра должен проводится только в специализированных ремонтных мастерских или на заводе изготовителе.
- **3.3** Техническое обслуживание аккумуляторов по технической и сопроводительной документации на аккумуляторы.
- **3.4** Мегаомметр, прошедший ремонт или по истечению межповерочного интервала, подлежит периодической поверке в объеме раздела 5 настоящего руководства по эксплуатации.

4 ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1 Транспортирование и хранение мегаомметра должно производиться в соответствии с требованиями ГОСТ 22261.

Мегаомметр может транспортироваться всеми видами крытого транспорта.

Условия транспортирования:

- температура окружающего воздуха от минус 50 °C до плюс 70 °C,
- относительная влажность воздуха до 95 % при температуре 30 °C.
- **4.2** Мегаомметр хранить в упаковке предприятия-изготовителя при температуре окружающего воздуха от 0 °C до 40 °C и относительной влажности воздуха 80 % при температуре 35 °C.

Хранить мегаомметр без упаковки следует при температуре окружающего воздуха от $10\,^{\circ}$ С до $35\,^{\circ}$ С и относительной влажности воздуха $80\,^{\circ}$ при температуре $25\,^{\circ}$ С.

5 ПОВЕРКА

- **5.1** Раздел ПОВЕРКА руководства по эксплуатации утвержден Первым заместителем генерального директора Укрметртестстандарта Жалдаком Н. С. по результатам государственных приемочных испытаний мегаомметра ЦС0202 «28» _____ 04 ____ 2008 г.
- **5.2** Раздел ПОВЕРКА руководства по эксплуатации предназначен для первичной и периодической поверки мегаомметра ЦС0202 и устанавливает условия, объем и методы поверки, а также порядок оформления результатов поверки.

Межповерочный интервал установлен один год.

5.3 Раздел ПОВЕРКА разработан в соответствии с требованиями ДСТУ 2708:2006 «Повірка засобів вимірювальної техніки. Організація та порядок проведення», ГОСТ

22261 и РМГ 51--2002 «Документы на методики поверки средств измерений. Основные положения.»

5.4 Операции и средства поверки

5.4.1 При проведении первичной и периодической поверки должны быть выполнены операции и применены средства поверки, указанные в таблице 5.1.

Таблица 5.1

таолица 5.1				
Наименование опе-	Пункт раз- дела ПО- ВЕРКА РЭ	Наименование и тип основного или вспомогательного сред-	Обязательность проведения операции при	
рации	рации (методика поверки) ства поверки, их основные технические характеристики		первичной по- верке	периодической поверке
1	2	3	4	5
Проверка условий измерениий	5.5.1	Термометр, (10-30) °С, цена деления 0,5 °С; психрометр, (10-100) %	Да	Да
Внешний осмотр	5.7.1.1	_	Да	Да
Проверка электрической прочности изоляции	5.7.2.1	Пробойная установка УПУ- 10, диапазон воспроизводи- мого напряжения от 0,2 кВ до 10 кВ. Секундомер С1- 2A, цена деления 0,5с.	Да	Нет
Определение сопротивления изоляции	5.7.3.1	Мегаомметр ЭС0202/2, рабочее напряжение 2500 B, относительная погрешность ± 15 %	Да	Нет
Опробование	5.7.4.1	Мера-имитатор P40116 3-го разряда, $(1\cdot10^4-1\cdot10^{12})$ Ом, погрешность $(0,020,2)$ %	Да	Да
Контроль измери- тельного напряже- ния	5.7.5.1, 5.7.5.2	Мера-имитатор Р40116 3-го разряда, (1·10 ⁴ -1·10 ¹²) Ом, погрешность (0,020,2) %; вольтметры электростатические: С 502/3, (0-150) В, класс точности 0,5; С 502/6, (0–600) В, класс точности 0,5; С 502/8, (0-1,5) кВ, класс точности 0,5; С 502/9, (0-3) кВ, класс точности 0,5	Да	Да
Определение отно- сительной основной погрешности изме- рения сопротивле- ния	5.7.6.1 5.7.6.2	Мера-имитатор Р40116 3-го разряда, $(1\cdot10^4-1\cdot10^{12})$ Ом, погрешность $(0,020,2)$ % Конденсатор емкостью 0,5 мкФ ±10 %, $U_{\text{ном}}$ больше или равно 1 кВ.	Да	Да
Определение абсо- лютной основной погрешности изме- рения напряжения	5.7.7.1	Установка У-300, выходное напряжение (0-1000) В; вольтметры Д5081, Д5082, класс точности 0,2	Да	Да
Оформление ре- зультатов поверки	5.8.15.8.4	_	Да	Да

Примечание. При поверке разрешается применять другие средства поверки, обеспечивающие определение (контроль) метрологических характеристик с требуемой точностью.

5.5 Условия поверки и подготовка к ней

- 5.5.1 Поверку проводить в нормальных условиях применения мегаомметра:
- температура окружающего воздуха, °С ... 20±5;
- относительная влажность воздуха, %30–80;
- атмосферное давление, кПа84–106;
- электропитание от блока питания 12 В, ток нагрузки 0,7 А.
- **5.5.2** Мегаомметр, подлежащий поверке, средства поверки и вспомогательное оборудование перед поверкой выдержать в нормальных условиях применения не менее двух часов.

5.6 Требования безопасности

5.6.1 Требования безопасности – по 2.3 настоящего руководства по эксплуатации.

5.7 Проведение поверки

5.7.1 Внешний осмотр

- 5.7.1.1 При проведении внешнего осмотра проверяют:
- соответствие комплектности требованиям 1.3.1;
- отчетливую видимость маркированных знаков и символов;
- отсутствие неудовлетворительных креплений деталей и электрических соединений;
- отсутствие трещин, царапин, загрязнений и других изъянов, мешающих считыванию показаний;
 - отсутствие грубых механических повреждений наружных частей мегаомметра.

При положительных результатах внешнего осмотра поверка продолжается.

При периодической поверке из комплектности допускается отсутствие сумки и аккумуляторов.

5.7.2 Проверка электрической прочности изоляции

5.7.2.1 Электрическую прочность изоляции мегаомметра и шнуров проверяют на установке мощностью не менее 0,25 кВ·А.

Испытательное напряжение переменного тока частоты 50 Гц подают:

- между соединенными вместе измерительными контактами мегаомметра и металлической фольгой, плотно прилегающей к поверхности мегаомметра;
- между токопроводящими контактами шнура и металлической фольгой, плотно прилегающей к поверхности наконечников шнура.

Металлическая фольга не должна покрывать зону расположения измерительных контактов на расстоянии до 20 мм.

Испытательное напряжение плавно поднимают до 5,2 кВ и выдерживают в течении 1 мин, после чего плавно уменьшают до нуля.

Результаты проверки считают положительными, если не произошло пробоя изоляции мегаомметра и наконечников шнуров.

5.7.3 Определение сопротивления изоляции

5.7.3.1 Сопротивление изоляции измеряют в местах указанных в 5.7.2.1 мегаомметром с измерительным (рабочим) напряжением 2500 В.

Результаты проверки положительные, если показания мегаомметра превышают 40 MOм.

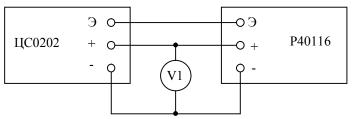
5.7.4 Опробование

5.7.4.1 При опробовании мегаомметра проверяют:

- диапазоны показаний и измерения;
- наличие в памяти мегаомметра результатов предыдущих измерений;
- время автоматического отключения мегаомметра.

Диапазон измерения проверяют при определении относительной основной погрешности.

Проверку диапазона показаний проводят по схеме рисунка 5.1, в которой вольтметр V1 отключен, путем измерения мегаомметром сопротивлений R_X =0, R_X = ∞ и R_X =150 ГОм при измерительном напряжении 1000 В. На дисплее мегаомметра должно индицироваться, соответственно: R=0; R>200 $G\Omega$ и результат измерения сопротивления 150 Γ Oм.


Наличие в памяти мегаомметра результатов предыдущих измерений и времени автоматического отключения проводят в следующей последовательности:

- нажимают и отпускают кнопку ПИТАНИЕ;
- нажимают 10 раз кнопку «▲» или «▼»;
- включают секундомер после последнего нажатия кнопки.

При каждом нажатии кнопки «▲» на дисплее должно индицироваться значение сопротивления и измерительного напряжения предыдущего измерения, а отключение мегаомметра от сети питания (прекращение свечения дисплея) должно осуществляться за (1,5–2) мин после последнего нажатия кнопки.

5.7.5 Контроль измерительного напряжения

5.7.5.1 Контроль измерительного напряжения, установленного на мегаомметре, проводят по схеме рисунка 5.1 и таблицы 5.2.

где V1 – электростатический вольтметр С 502 – рабочий эталон.

Рисунок 5.1 – Схема контроля измерительного напряжения

Таблица 5.2

Установленное значение напряжения, В	Измеряемое сопротивление, МОм	
100	10 и 1000	
1000	100 и 100000	
2500	250 и 100000	

5.7.5.2 Поочередно, при каждом значении установленного напряжения, выставляют на мере-имитаторе значения сопротивлений по таблице 5.2 и проводят измерения по методике 2.4.2 в ручном режиме, фиксируя напряжение на P40116 по вольтметру V1.

Результаты проверки считают положительным, если измерительное напряжение, измеренное на сопротивлении, отличается от напряжения установленного на дисплее мегаомметра, не более чем на \pm 10 %.

5.7.6 Определение относительной основной погрешности измерения сопротивления

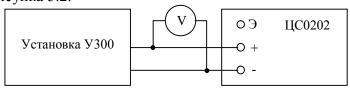
- **5.7.6.1** Определение относительной основной погрешности измерения сопротивления проводят путем сравнения показаний мегаомметра со значением сопротивления рабочего эталона по схеме рис. 5.1, в которой вольтметр V1 отключен.
 - 5.7.6.2 Относительную основную погрешность определяют в точках, соответст-

вующих измеряемому сопротивлению 200 кОм, 10 МОм, 100 МОм, 1000 МОм при измерительном напряжении 100 В и 2,5 МОм, 100 МОм, 1000 МОм, 10 ГОм, 100 ГОм при измерительных напряжения 1000 и 2500 В в следующей последовательности:

- устанавливают на рабочем эталоне значение сопротивления R_{io} , соответствующее измеряемому сопротивлению контролируемой точки;
 - устанавливают требуемое измерительное напряжение;
- нажимают кнопку ИЗМ и по истечению 15 с с момента появления записи ИДЕТ ИЗМЕРЕНИЕ в каждой контролируемой точке из 3–5 следующих друг за другом показаний фиксируют показание R_{imax} , максимально отличающееся по модулю от измеряемого сопротивления R_{i0} ;
 - отпускают кнопку ИЗМ;
- подсчитывают относительную основную погрешность (δ_i) в i-той контролируемой точке, в процентах, по формуле:

$$\delta_i = \frac{R_{i \max} - R_{io}}{R_{io}} \cdot 100.$$

Проводят измерение сопротивления $100 \text{ M}\Omega$ при измерительном напряжении 1000 B в автоматическом режиме измерения и в режиме измерения сопротивления изоляции объекта с большой электрической емкостью (Ru) и подсчитывают относительную основную погрешность (δ_i), в процентах, по формуле:


$$\delta_i = \frac{R_u - 100}{100} \cdot 100.$$

В режиме работы на емкость измеряемое сопротивление 100 МОм шунтируют емкостью 0,5 мкФ с рабочим напряжением 1 кВ.

Результаты проверки положительные, если относительная основная погрешность в каждой контролируемой точке при всех режимах работы не превышает $\pm 2,5$ %.

5.7.7 Определение основной погрешности измерения напряжения

5.7.7.1 Основную абсолютную погрешность измерения внешнего напряжения проводят путем сравнения показаний значения напряжения на дисплее мегаомметра U_U со значением напряжения, отсчитанного по рабочему эталону $U_{\rm Э}$ в точках: 40, 100, 200, 300, 400 и 500 В по схеме рисунка 5.2.

где V – вольтметр Д5081, Д5082 – рабочий эталон.

Рисунок 5.2 — Схема определения относительной основной погрешности мегаомметра в режиме измерения внешнего напряжения

Основную абсолютную погрешность мегаомметра в режиме измерения напряжения вычисляют по формуле:

$$\Delta = U_U - U_{3}$$
.

При напряжении (40 + 5) В нажимают кнопку ИЗМ и убеждаются, что измерение сопротивления изоляции заблокировано.

Проверку мегаомметра в режиме измерения внешнего напряжения считают положительной, если их погрешность при измерении внешнего напряжения не превышает \pm 12,5 B.

5.8 Оформление результатов поверки

5.8.1 Результаты периодической поверки мегаомметра заносят в протокол. Форма протокола произвольная.

- **5.8.2** Положительные результаты первичной поверки оформляют записью в руководстве по эксплуатации и оттиском поверительного клейма на корпусе мегаомметра.
- **5.8.3** Положительные результаты периодической поверки оформляют свидетельством согласно приложения А ДСТУ 2708 и нанесениям оттиска поверительного клейма на корпусе мегаомметра.
- **5.8.4** Отрицательные результаты периодической поверки оформляют справкой о непригодности по форме приложения Б ДСТУ 2708 с указаниям причины забракования. Клеймо предыдущей поверки гасится и в руководстве по эксплуатации делается соответствующая запись.

Примечание. В странах, где мегаомметр ЦС0202 утвержден как тип средств измерительной техники, результаты поверки оформляют в порядке, установленном национальным органом по метрологии.

6 УТИЛИЗАЦИЯ

6.1 Мегаомметр не представляет опасности для жизни и здоровья людей, не оказывает вредного воздействия на состояние окружающей природной среды, изготовлен из материалов, разрешенных к применению государственной санитарно-эпидемиологической службой и, после окончания срока службы (эксплуатации), не требует специальных методов утилизации.