

MicroOhm 2A MI 3242 Руководство по эксплуатации

Версия 1.0, кодовый № 20 752 013

Производитель:

METREL d.d. Ljubljanska cesta 77 SI-1354 Horjul

Тел.: +386 1 75 58 200 Факс: +386 1 75 49 226 E-mail: metrel@metrel.si http://www.metrel.si

Маркировка данным знаком свидетельствует о том, что обозначенное им оборудование отвечает требованиям соответствующих директив Европейского Союза в отношении безопасности и электромагнитной совместимости.

© 2012 METREL

Запрещено воспроизведение или коммерческое использование данных материалов или их частей в любом виде и форме без письменного разрешения компании METREL.

СОДЕРЖАНИЕ

1.1 Характеристики. 55 2 Указания по мерам безопасности. 66 2.1 Предупреждения и примечания 6 2.2.1 Использование новых батарей или батарей, не использовавшихся в течение длительного периода 8 2.3 Список применимых стандартов 10 3 Описание прибора 11 3.1 Лицевая панель 11 3.2 Панель с соединительными разъемами 12 3.3 Задняя панель 13 3.4 Измерительные принаждежности 14 3.5 Организация дисплея 15 3.5.1 Индикация состояния батареи и времени 15 3.5.2 Поле сообщений 16 3.5.3 Меню помощи 16 3.5.4 Регулировка подсветки и контрастности 17 4 Работа с прибором 18 4.1 Выбор функции 18 5.1 Выбор рязыка 19 5.1 Выбор языка 19 5.2 Установка заводских настроек 19 5.3 Настройка даты и времени 21	1	Обц	цее описание	5
2.1 Предупреждения и примечания 6 2.2 Батарея и ее заряд 8 2.2.1 Использовании новых батверей или батверей, не использовавшихся в темением олительного периода 9 2.3 Список применимых стандартов 10 3 Описание прибора 11 3.1 Лицевая панель 11 3.2 Панель с соединительными разъемами 11 3.3 Задняя панель 13 3.4 Измерительные принаждежности 14 3.5 Организация дисплея 15 3.5.1 Индикация состояния батареи и времени 15 3.5.2 Лоле сообщений 16 3.5.3 Меню помощи 16 3.5.4 Регупировка подсветки и контрастности 17 4 Работа с прибором 18 4.1 Выбор функции 18 5.1 Выбор функции 18 5.2 Установка заводских настроек. 19 5.3 Настройка предельных значений 20 5.4 Памуть нь предельных значений 22 5.5 Настройка предельных значений <th></th> <th>1.1</th> <th>Характеристики</th> <th>5</th>		1.1	Характеристики	5
2.1 Предупреждения и примечания 6 2.2 Батарея и ее заряд 8 2.2.1 Использовании новых батверей или батверей, не использовавшихся в темением олительного периода 9 2.3 Список применимых стандартов 10 3 Описание прибора 11 3.1 Лицевая панель 11 3.2 Панель с соединительными разъемами 11 3.3 Задняя панель 13 3.4 Измерительные принаждежности 14 3.5 Организация дисплея 15 3.5.1 Индикация состояния батареи и времени 15 3.5.2 Лоле сообщений 16 3.5.3 Меню помощи 16 3.5.4 Регупировка подсветки и контрастности 17 4 Работа с прибором 18 4.1 Выбор функции 18 5.1 Выбор функции 18 5.2 Установка заводских настроек. 19 5.3 Настройка предельных значений 20 5.4 Памуть нь предельных значений 22 5.5 Настройка предельных значений <th>2</th> <th>Ука</th> <th>зания по мерам безопасности</th> <th>6</th>	2	Ука	зания по мерам безопасности	6
3.1 Лицевая панель 11 3.2 Панель с соединительными разъемами 12 3.3 Задняя панель 13 3.4 Измерительные принаждежности 14 3.5 Организация дисплея 15 3.5.1 Индикация состояния батареи и еремени 15 3.5.2 Поте сообщений 15 3.5.3 Меню помощи 16 3.5.4 Регупировка подсветки и контрастности 17 4 Работа с прибором 18 4.1 Выбор функции 18 5 Настройки 19 5.1 Выбор языка 19 5.2 Установка заводских настроек 19 5.3 Настройка предельных значений 20 5.4 Память 21 5.5 Настройка даты и времени 21 5.6 Информация о приборе 22 6 Измерения 23 6.1 4-проводный метод Кельвина 23 6.2 Информация о приборе 22 6.2.1 Однократный режим 26		2.1 2.2 2.2.1 mey	Предупреждения и примечанияБатарея и ее заряд	8 9
3.1 Лицевая панель 11 3.2 Панель с соединительными разъемами 12 3.3 Задняя панель 13 3.4 Измерительные принаждежности 14 3.5 Организация дисплея 15 3.5.1 Индикация состояния батареи и еремени 15 3.5.2 Поте сообщений 15 3.5.3 Меню помощи 16 3.5.4 Регупировка подсветки и контрастности 17 4 Работа с прибором 18 4.1 Выбор функции 18 5 Настройки 19 5.1 Выбор языка 19 5.2 Установка заводских настроек 19 5.3 Настройка предельных значений 20 5.4 Память 21 5.5 Настройка даты и времени 21 5.6 Информация о приборе 22 6 Измерения 23 6.1 4-проводный метод Кельвина 23 6.2 Информация о приборе 22 6.2.1 Однократный режим 26	3	Опи	ісание прибора	11
4Работа с прибором184.1Выбор функции185Настройки195.1Выбор языка195.2Установка заводских настроек195.3Настройка предельных значений205.4Память215.5Настройка даты и времени215.6Информация о приборе226Измерения236.14-проводный метод Кельвина236.2Измерение сопротивления246.2.1Однократный режим256.2.2Непрерывный режим266.2.3Автоматический режим266.2.4Индуктивный режим266.2.4Индуктивный режим276.3Напряжение ИСКЗ297Работа с результатами307.1Организация памяти307.2Структура данных307.3Сохранение результатов измерения317.4Вызов результатов измерения327.5Удаление сохраненных результатов33		3.1 3.2 3.3 3.4 3.5 3.5.2 3.5.2	Лицевая панель Панель с соединительными разъемами Задняя панель Измерительные принаждежности Организация дисплея Индикация состояния батареи и времени Поле сообщений Меню помощи	1113141515
4.1 Выбор функции 18 5 Настройки 19 5.1 Выбор языка 19 5.2 Установка заводских настроек 19 5.3 Настройка предельных значений 20 5.4 Память 21 5.5 Настройка даты и времени 21 5.6 Информация о приборе 22 6 Измерения 23 6.1 4-проводный метод Кельвина 23 6.2 Измерение сопротивления 24 6.2.1 Однократный режим 25 6.2.2 Непрерывный режим 26 6.2.3 Автоматический режим 26 6.2.4 Индуктивный режим 26 6.3 Напряжение ИСКЗ 29 7 Работа с результатами 30 7.1 Организация памяти 30 7.2 Структура данных 30 7.3 Сохранение результатов измерения 31 7.4 Вызов результатов измерения 32 7.5 Удаление сохраненных результатов 33 <th>4</th> <th></th> <th></th> <th></th>	4			
5 Настройки 19 5.1 Выбор языка 19 5.2 Установка заводских настроек 19 5.3 Настройка предельных значений 20 5.4 Память 21 5.5 Настройка даты и времени 21 5.6 Информация о приборе 22 6 Измерения 23 6.1 4-проводный метод Кельвина 23 6.2 Измерение сопротивления 24 6.2.1 Однократный режим 25 6.2.2 Непрерывный режим 26 6.2.3 Автоматический режим 26 6.2.4 Индуктивный режим 26 6.3 Напряжение ИСКЗ 29 7 Работа с результатами 30 7.1 Организация памяти 30 7.2 Структура данных 30 7.3 Сохранение результатов измерения 31 7.4 Вызов результатов измерения 32 7.5 Удаление сохраненных результатов 33				
5.1 Выбор языка	5	Нас		
6.1 4-проводный метод Кельвина 23 6.2 Измерение сопротивления 24 6.2.1 Однократный режим 25 6.2.2 Непрерывный режим 26 6.2.3 Автоматический режим 26 6.2.4 Индуктивный режим 27 6.3 Напряжение ИСКЗ 29 7 Работа с результатами 30 7.1 Организация памяти 30 7.2 Структура данных 30 7.3 Сохранение результатов измерения 31 7.4 Вызов результатов измерения 32 7.5 Удаление сохраненных результатов 33		5.2 5.3 5.4 5.5	Установка заводских настроекНастройка предельных значенийПамятьНастройка даты и времени	19 20 21
6.2 Измерение сопротивления 24 6.2.1 Однократный режим 25 6.2.2 Непрерывный режим 26 6.2.3 Автоматический режим 27 6.2.4 Индуктивный режим 27 6.3 Напряжение ИСКЗ 29 7 Работа с результатами 30 7.1 Организация памяти 30 7.2 Структура данных 30 7.3 Сохранение результатов измерения 31 7.4 Вызов результатов измерения 32 7.5 Удаление сохраненных результатов 33	6	Изм		
7.1 Организация памяти		6.2.2 6.2.2 6.2.2 6.2.2	Измерение сопротивления	24 25 26 26
7.2 Структура данных 30 7.3 Сохранение результатов измерения 31 7.4 Вызов результатов измерения 32 7.5 Удаление сохраненных результатов 33	7	Раб	ота с результатами	30
		7.2 7.3 7.4 7.5	Структура данных	30 31 32

7.5.2	Удаление результата(-ов) в выбранной ячейке	34
7.5.3	Удаление отдельных результатов	34
9 Обслу	живание	37
9.1 Чи	стка	37
	риодическая калибровка	
	монт	
10 Техн	ические характеристики	38
10.1 Co	противление	38
	раметры измерения	
10.3 Ha	пряжение и частота	39
10.3.1	Напряжение	39
10.3.2	Частота	39
10.4 Of	бщие характеристики	40

1 Общее описание

1.1 Характеристики

Прибор **MI 3242 MicroOhm 2A** представляет собой портативный (< 1,5 кг) **двунаправленный** омметр низких сопротивлений, основанный на **4-проводном методе измерений Кельвина**. Прибор предназначен для измерения низких сопротивлений:

- Переключателей;
- Реле:
- Разъемов:
- Электрических шин;
- Соединений кабелей распределения мощности;
- Обмоток двигателей и генераторов;
- > Силовых трансформаторов;
- > Силовых индукторов;
- Соединений рельсовых путей;
- Проводов и кабелей;
- Сварных соединений.

Прибор разработан на основе многолетнего опыта работы в данной области.

Измерительные функции и отличительные особенности прибора MicroOhm 2A:

- Измерение сопротивления (4-проводный метод Кельвина);
- Высокое разрешение измерений (24-бит. Σ-Δ ADC);
- Широкий диапазон измерений (1 мкОм ... 199,9 Ом);
- Регулируемый измерительный ток (10 мА ... 2 A);
- Установка нижнего и верхнего предельных значений;
- Автоматическая компенсация термоэдс;
- Подавление шума (50/60 Гц);
- 4 различных режима измерений (однократный, непрерывный, индуктивный, автоматический);
- ▶ Передача данных на ПК посредством USB и RS232;
- Измерение ИСКЗ напряжения;
- ▶ Высокая категория перенапряжения КАТ III / 600 В.

Матричный ЖК дисплей с подсветкой, с разрешением 128 x 64 пикс., позволяет легко считывать результаты и параметры измерений. Работа прибора проста и понятна — оператор не нуждается в какой бы то ни было специальной подготовке (кроме прочтения настоящего руководства) для работы с прибором.

Полученные результаты измерений могут быть сохранены в памяти прибора, а затем, с помощью программного обеспечения (ПО) HVLink PRO, поставляемого вместе с прибором, загружены на ПК для дальнейшего анализа и распечатки протокола измерений.

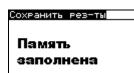
2 Указания по мерам безопасности

2.1 Предупреждения и примечания

Для достижения высокого уровня безопасности при выполнении различных тестов и измерений с использованием прибора **MI 3242 MicroOhm 2A**, а также для сохранения прибора в рабочем состоянии, важно выполнять нижеприведенные указания.

- □ Данный знак на приборе означает «Внимательно ознакомьтесь с руководством по эксплуатации»!
- □ Если прибор будет использоваться в целях, не указанных в данном руководстве, защитные характеристики прибора могут быть снижены!
- Внимательно ознакомьтесь с руководством по эксплуатации, иначе эксплуатация прибора может быть опасной для оператора, прибора или испытываемого оборудования!
- Не используйте прибор и принадлежности, если замечено какое-либо повреждение!
- □ Во избежание поражения электрическим током принимайте все известные меры безопасности при работе с опасными напряжениями!
- □ Не подключайте прибор к системам питания напряжением выше 600 В!
- Сервисное обслуживание, ремонт и процедура калибровки прибора должны выполняться только уполномоченными лицами!
- Используйте только стандартные или дополнительные измерительные принадлежности, поставляемые Вашим дистрибьютором!
- □ В комплект поставки прибора входят перезаряжаемые NiMH батареи. Батареи могут быть заменены только на батареи такого же типа, как указано на наклейке отсека для батарей или описано в данном руководстве. Не используйте стандартные щелочные батареи во время того, как подключен адаптер питания, они могут взорваться!
- Внутри прибора присутствуют опасные напряжения. Перед тем как открыть крышку отсека для батарей, отсоедините все измерительные провода и выключите прибор.

Предупреждения, касающиеся измерительных функций:


Измерение сопротивления, напряжения и частоты:

- □ Измерение сопротивления должно осуществляться только на обесточенных объектах!
- □ Не прикасайтесь к объекту измерений во время проведения измерения или до момента его полного разряда! Существует опасность поражения электрическим током!
- При проведении измерения сопротивления на индуктивном объекте автоматический разряд объекта после завершения измерения может занять некоторое время!
- Не подключайте измерительные клеммы к внешнему напряжению выше 600 В (постоянного или переменного тока), чтобы избежать повреждения измерительного прибора!

Примечания, касающиеся измерительных функций:

Общие

- Если между измерительными клеммами обнаружено напряжение, превышающее 8 В (постоянного или переменного тока), то на экране появится предупреждающий знак 2, и измерение сопротивления проведено не будет. Если все клеммы будут иметь одинаковый потенциал, то предупреждение не появится.
- □ Оценка результатов в виде «Соответствует / Не соответствует» осуществляется в случае, если установлены предельные значения. Введите соответствующие предельные значения для осуществления оценки полученных результатов измерения.

Внутренняя память прибора заполнена!

2.2 Батарея и ее заряд

Для работы прибора необходимо 6 алкалиновых батарей размера АА или 6 перезаряжаемых NiMH батарей. Номинальное время работы декларируется для аккумуляторов с номинальной емкостью 2100 мАч.

Уровень заряда батарей всегда отображается в нижнем правом углу дисплея.

В случае если аккумуляторы / батареи разряжены, прибор отобразит сообщение. как показано на рисунке 2.1. Данное сообщение появляется на несколько секунд, а затем прибор выключается.

Рисунок 2.1: Индикация разряда батарей

Батареи заряжаются всегда, когда зарядное устройство подключено к прибору. Полярность гнезда зарядного устройства показана на рисунке 2.2. Встроенная схема контроля процедуры зарядки обеспечивает максимальную продолжительность работы батарей.

Рисунок 2.2: Полярность гнезда зарядного устройства

Прибор автоматически распознает подключенное зарядное устройство и начинает процесс зарядки.

Рисунок 2.3: Индикация заряда

- □ ▲ Когда прибор подключен к электроустановке, внутри отсека для батарей может присутствовать опасное напряжение! При необходимости замены батарей или перед открытием крышки отсека для батарей / предохранителей, отсоедините от прибора все измерительные принадлежности и отключите прибор.
- □ Правильно вставляйте батареи, иначе прибор может выйти из строя, а батареи могут разрядиться.
- □ Если прибор не будет использоваться в течение длительного времени, удалите все батареи из отсека для батарей.
- □ Используйте щелочные или перезаряжаемые NiMH батареи (размер AA). Metrel рекомендует использовать только перезаряжаемые батареи с номинальной емкостью 2100 мА/час или более.

- □ Не перезаряжайте щелочные батареи!
- Используйте зарядное устройство только от производителя или дистрибьютора измерительного оборудования во избежание возможного возникновения пожара или поражения электрическим током!

2.2.1 Использование новых батарей или батарей, не использовавшихся в течение длительного периода

При зарядке новых батарей или батарей, не использовавшихся в течение длительного периода времени (больше 3 месяцев) могут произойти непредсказуемые химические процессы. NiMH батареи могут быть подвержены эффекту уменьшения емкости (называемому «эффект памяти»). В результате данного эффекта время работы прибора может быть значительно сокращено в первоначальные циклы заряда / разряда.

Поэтому, для увеличения продолжительности работы батарей, Metrel рекомендует выполнить следующую процедуру:

Операция		Примечания
>	Полностью зарядите батареи.	По крайней мере, 14 часов, с помощью
		встроенного зарядного устройства.
		Это может быть осуществлено при
>	Полностью разрядите батареи.	нормальной работе прибора до полного
		разряда батарей.
>	Повторите цикл заряда / разряда	Рекомендуются четыре цикла, чтобы
	батарей минимум 2 – 4 раза.	восстановить нормальную емкость
		батарей.

Примечания:

- □ Зарядное устройство прибора представляет собой зарядное устройство группы элементов. Это означает, что во время зарядки батареи соединены последовательно, поэтому все батареи должны быть в одинаковом состоянии (одинаково заряжены, одного типа и иметь одну дату выпуска).
- Даже одна батарея другого типа может привести к некорректной зарядке и разряду полного пакета батарей во время нормальной работы (что может проявиться в нагревании пакета батарей, значительном уменьшении времени работы, неверной полярности поврежденной батареи и т.д.).
- □ Если после выполнения нескольких циклов заряда / разряда не достигнуто увеличение времени работы батарей, необходимо определить состояние отдельных батарей (путем сравнения напряжения батарей, проверки их в ячейке зарядного устройства и т.д.). Вероятно, что только некоторые из батарей повреждены.
- Эффекты, описанные выше, не надо путать с естественным снижением емкости батареи с течением времени. Все перезаряжаемые батареи теряют часть своей производительности после неоднократной заряда / разряда. Фактическое уменьшение емкости батарей, связанное с количеством циклов заряда / разряда, зависит от типа батареи и приведено в технических характеристиках, данных производителем батареи.

2.3 Список применимых стандартов

Прибор MicroOhm 2A произведен и испытан в соответствии со следующими стандартами:

Электромагнитная совместимость (ЕМС)

EN 61326 Электрическое оборудование для измерения, контроля и

лабораторного использования – требования ЕМС

Класс А

Безопасность (LVD)

EN 61010-1 Требования безопасности для электрического оборудования для

измерения, контроля и лабораторного использования – Часть 1:

Общие требования

EN 61010-2-030 Требования безопасности для электрического оборудования для

измерения, контроля и лабораторного использования – Часть 2-

030: Специфические требования для измерительных схем.

EN 61010-031 Требования безопасности для электрического оборудования для

измерения, контроля и лабораторного использования – Часть 031: Требования безопасности для измерительных принадлежностей

Примечания относительно стандартов EN и IEC:

□ Текст данного руководства содержит в себе ссылки на Европейские стандарты. Все стандарты серии EN 6XXXX (например, EN 61010) эквивалентны стандартам серии IEC с такими же номерами (например, IEC 61010) и отличаются только внесенными поправками.

3 Описание прибора

3.1 Лицевая панель

Лицевая панель прибора показана на Рисунке 3.1.

Рисунок 3.1: Лицевая панель

Условные обозначения:

1	ЖК дисплей	Матричный дисплей с разрешением 128x64 пикселей с подсветкой	
4	TEST	Начало измерений / подтверждение выбранной опции	
5	BBEPX	Момоношио выбранного поромотра	
6	ВНИ3	Изменение выбранного параметра.	
7	MEM	Сохранение / вызов результатов из памяти прибора.	
8	Переключатель	Du Con versonumom versonum do municipal	
11	функций	Выбор измерительной функции.	
9	Подсветка	Изменение уровня подсветки и контрастности.	
10	ВКЛ / ВЫКЛ	Включение / Выключение прибора. Прибор автоматически выключается, спустя 15 минут после последнего нажатия любой кнопки.	
12	HELP	Вход в меню помощи.	
13	Табулятор	Выбор параметра в выбранной функции.	
2	Не соответствует	Красный Индикация соответствия /	
		индикатор несоответствия результатов измерения	
3	Соответствует	установленным пределам.	
		индикатор	

3.2 Панель с соединительными разъемами

Рисунок 3.2: Панель с разъемами

Условные обозначения:

_1	Разъем для измерений	Входы / выходы для измерений
2	Защитная крышка	
3	Разъем для сетевого	Для подключения внешнего адаптера питания
	адаптера	
4	Разъем USB	Коммуникация с портом USB (1.1) ПК.
5	Разъем PS/2	Коммуникация с принтером;
5	Fasbein FS/2	Коммуникация с последовательным портом ПК.

Предупреждения!

- □ Максимально допустимое напряжение между любыми измерительными клеммами и землей 600 В!
- □ Максимально допустимое напряжение между измерительными клеммами– 600 В!!
- Максимальное кратковременное напряжение внешнего адаптера питания – 14 В!
- □ Используйте только измерительные принадлежности, поставляемые Вашим дистрибьютором!

3.3 Задняя панель

Рисунок 3.3: Задняя панель

Условные обозначения:

- 1 Ремень на руку
- 2 Крышка отсека для батарей
- 3 Винты для фиксации крышки отсека для батарей
- 4 Информационный ярлык на задней панели
- 5 Подставка для наклонной позиции прибора

Рисунок 3.4: Отсек для батарей

Условные обозначения:

- 1 Батареи Тип AA, щелочные или перезаряжаемые NiMH
- 2 Ярлык с серийным номером

3.4 Измерительные принаждежности

Измерительные принадлежности подразделяются на стандартные и дополнительные. Дополнительные принадлежности могут быть поставлены по запросу. Смотрите приложенный список принадлежностей, доступных для заказа у Вашего дистрибьютора, или посетите официальный сайт компании Metrel: http://www.metrel.si.

Рисунок 3.5: Стандартный комплект поставки прибора

- » Прибор MI 3242 MicroOhm 2A
- > Измерительный провод, 2,5 м, 2 шт. (красный, черный)
- Зажим типа «крокодил», 4 шт. (красный, черный)
- > Измерительный наконечник, 2 шт. (черный)
- > Сумка для переноски
- Перезаряжаемые NiMH батареи, 6 шт.
- Адаптер питания
- Кабель RS232 PS2
- Кабель USB
- > Программное обеспечение HVLink PRO
- > Руководство по эксплуатации (на компакт-диске)
- > Свидетельство о калибровке

3.5 Организация дисплея

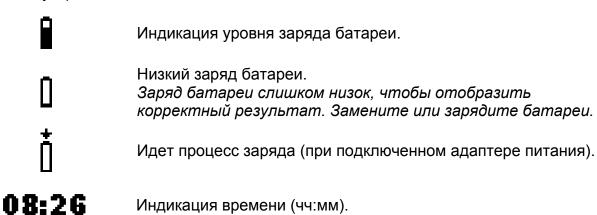


Рисунок 3.6: Типичный экран

R Непрерывн.	Название функции
R+:Ω R-:Ω Ix:A	Поле результатов
2A	Поле параметров измерения
∞	Поле сообщений
	Индикация состояния батареи и времени

3.5.1 Индикация состояния батареи и времени

В данном поле отображается состояние заряда батареи и подключение внешнего зарядного устройства.

Предупреждение:

□ Если батареи удаляются на более, чем на 1 минуту, установленная настройка времени будет утеряна и будут восстановлены первоначальные настройки.

Примечание:

□ Дата и время указываются для каждого сохраненного результата.

3.5.2 Поле сообщений

В поле сообщений отображаются предупреждения и сообщения.

Результат измерения может быть сохранен.

На измерительных клеммах присутствует высокое напряжение.

Идет процесс измерения.

Входы Р1, Р2, С1 или С2 не подключены к прибору, или обнаружено слишком высокое сопротивление.

Низкий измерительный ток (измерительный ток ниже установленного предела Iset -10%).

Результат измерения находится в заданных пределах.

Результат измерения вне заданных пределов.

Результат измерения превышает заданный верхний предел.

Результат измерения превышает заданный верхний предел.

3.5.3 Меню помощи

HELP	Открывает меню помощи.	
------	------------------------	--

Меню помощи доступны для всех функций. Меню помощи содержит схемы подключения прибора к объекту измерений.

Нажмите клавишу **HELP** для просмотра соответствующего меню помощи.

Клавиши в меню помощи:

ВВЕРХ / ВНИЗ	Выбор следующего / предыдущего экрана помощи.
Переключатель функций / HELP	Выход из меню помощи.

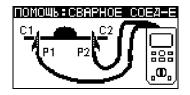


Рисунок 3.7: Примеры меню помощи

3.5.4 Регулировка подсветки и контрастности

С помощью клавиши **ПОДСВЕТКА** (🌣) может быть изменен уровень подсветки и контрастности дисплея.

Нажатие	Изменение уровня интенсивности подсветки.
Нажатие в течение 1 сек	Фиксирует высокий уровень интенсивности подсветки до тех пор, пока прибор не будет выключен или пока кнопка не будет нажата снова.
Нажатие в течение 2	Отображение гистограммы для регулировки контрастности
сек	дисплея.

Рисунок 3.8: Меню регулировки контрастности дисплея

Клавиши для регулировки контрастности дисплея:

вни3	Уменьшение контрастности.
BBEPX	Увеличение контрастности.
TEST	Подтверждение нового уровня контрастности.
ПОДСВЕТКА (☼)	Выход без изменений.

4 Работа с прибором

4.1 Выбор функции

Для выбора функции измерений используйте ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ.

Клавиши:

_	Могут быть выбраны следующие функции:
ПЕРЕКЛЮЧАТЕЛЬ	<СОПРОТИВЛЕНИЕ> Измерение сопротивления.
ФУНКЦИЙ	<h>НАПРЯЖЕНИЕ ИСКЗ> Измерение напряжения и частоты.</h>
	<НАСТРОЙКИ> Общие настройки прибора.
ВВЕРХ / ВНИЗ	Выбор подфункции в выбранной функции измерения .
ТАБУЛЯТОР	Выбор параметра измерения для настройки.
TEST	Запуск выбранного измерения.

Клавиши в поле параметров измерения:

ВВЕРХ / ВНИЗ	Изменение выбранного параметра.
ТАБУЛЯТОР	Выбор следующего параметра измерения.
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Выход из режима выбора параметров измерения.

5 Настройки

В меню настроек могут быть просмотрены и отрегулированы различные параметры прибора.

Рисунок 5.1: Меню настроек

Клавиши:

	Выбор опции для просмотра или регулировки: <ВЫБОР ЯЗЫКА> язык интерфейса прибора; < ЗАВОД. НАСТРОЙКИ > установка заводских настроек. < НАСТРОЙКА ПРЕДЕЛОВ > выбор предельных значений; <ПАМЯТЬ> вызов или удаление сохраненных результатов; < НАСТР. ДАТЫ/ВРЕМ. > настройка даты и времени; < ИНФО О ПРИБОРЕ > просмотр основной информации о приборе.
ТЕЅТ ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Подтверждение выбора. Возврат в основное меню.

5.1 Выбор языка

В данном меню может быть установлен язык интерфейса прибора.

Рисунок 5.2: Меню выбора языка

Клавиши:

ВВЕРХ / ВНИЗ	Выбор языка.
TEST	Подтверждение выбранного языка и выход в меню настроек.
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню функций без изменений.

5.2 Установка заводских настроек

В данном меню следующие параметры могут быть установлены на их первоначальные (заводские) значения:

- > Все параметры измерений;
- > Настройки дисплея;
- > Язык интерфейса.

Рисунок 5.3: Меню первоначальных настроек

Клавиши:

ТАБУЛЯТОР	Выбор опции ДА или НЕТ
TEST	Подтверждение выбора. Прибор будет перезагружен, при этом будут восстановлены заводские настройки (если было выбрано ДА). Возврат в меню настроек без изменений (если было выбрано НЕТ).
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.

5.3 Настройка предельных значений

Пользователь имеет возможность установки верхнего и нижнего предела значения сопротивления. Измеренное значение сопротивления сравнивается с установленными предельными значениями. Результат считается допустимым только, если он находится в заданных пределах.

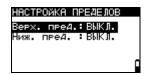


Рисунок 5.4: Меню настройки пределов

Параметры в меню настройки пределов:

Верх. пред.	Предельное значение сопротивления [ВЫКЛ, 1.00 мкОм 10.00
Ниж. пред.	мкОм, 20.0 мкОм 100.0 мкОм, 0.200 мОм 1.000 мОм, 2.00 мОм
-	10.00 мОм, 20.0 мОм 100.0 мОм, 0.200 Ом 1.000 Ом, 2.00
	Ом 10.00 Ом, 20.0 Ом 200.0 Ом]

Клавиши:

ВВЕРХ / ВНИЗ	Выбор верхнего или нижнего предела для настройки.
TEST	Вход в меню настройки пределов.
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.

Рисунок 5.5: Установка пределов

Клавиши в меню настройки пределов:

ВВЕРХ / ВНИЗ	Настройка выбранного предела.
MEM	Сохранение настройки и возврат в меню настройки пределов.
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.

Примечание:

 Предельные значения не будут сохранены в случае, если установленный верхний предел будет превышать значение нижнего предела. В процессе сохранения предельных значений на экране появится сообщение "Предел не действит."

5.4 Память

В данном меню могут быть просмотрены или удалены сохраненные результаты измерений.

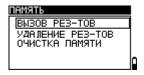


Рисунок 5.6: Меню памяти

Клавиши:

ВВЕРХ / ВНИЗ	Выбор опции.
TEST	Вход в выбранную опцию.
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.

Более подробная информация о работе с памятью приведена в Главе 7 *Работа с результатами*.

5.5 Настройка даты и времени

В данном меню может быть установлена текущая дата и время.

Рисунок 5.7: Меню настройки даты и времени

Клавиши:

ТАБУЛЯТОР	Выбор параметра для настройки.
ВВЕРХ / ВНИЗ	Настройка выбранного параметра.
TEST	Подтверждение настройки и возврат в меню настроек.
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.

Предупреждение:

□ Если батареи удаляются на более, чем на 1 минуту, установленные настройки даты и времени будут утеряны.

5.6 Информация о приборе

В данном меню может быть просмотрена следующая информация о приборе:

- > Тип прибора;
- Номер модели;
- > Версии встроенного программного и аппаратного обеспечения;
- > Серийный номер;
- > Дата калибровки.

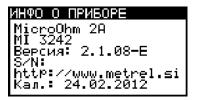


Рисунок 5.8: Меню информации о приборе

Клавиши:

ПЕРЕКЛЮЧАТЕЛЬ	Posport p coulopuos Moulo
ФУНКЦИЙ / TEST	Возврат в основное меню.

6 Измерения

6.1 4-проводный метод Кельвина

При измерении сопротивлений <20 Ом для достижения наивысшей точности рекомендуется использовать 4-проводный метод измерения (Рисунок 6.1). При использовании данного метода в результат измерения не включается сопротивление измерительных проводов, к тому же нет необходимости в калибровке и компенсации проводов.

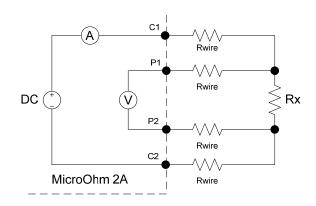


Рисунок 6.1: 4-проводный метод Кельвина

Измерительный ток протекает через неизвестное сопротивление Rx по проводам C1 и C2. Расположение данных проводов не имеет большого значения, но они всегда должны размещаться за проводами P1 и P2. Падение напряжения на Rx измеряется между P1 и P2, поэтому потенциальные провода должны быть расположены точно в тех точках, между которыми измеряется сопротивление.

Примечание относительного плохого соединения:

□ Большинство ошибок при измерениях возникают из-за плохого или неправильного соединения с испытываемым объектом. Крайне важно убедиться, что контакты испытываемого объекта не окислены и очищены от загрязнений. Высокое сопротивление контакта может вызвать ошибки и не позволить току протекать вследствие высокого сопротивления петли С1 -С2.

Примечание:

 Согласно закону Ома, ток, протекающий между двумя точками по проводнику, прямо пропорционален разности потенциалов или падению напряжения между двумя точками, и обратно пропорционален сопротивлению между ними. Данный закон описывается следующим уравнением:

$$I[Aмпер] = \frac{U[Bольm]}{R[O_M]} \Rightarrow Rx[O_M] = \frac{U[Bольm]}{I[Aмпер]}$$

6.2 Измерение сопротивления

Измерение может быть запущено в окне измерения сопротивления. Перед выполнением измерения могут быть откорректированы параметры (режим и измерительный ток).

Рисунок 6.2: Меню измерения сопротивления

Параметры при измерении сопротивления

Режим	Подфункция [Однократный, Непрерывный, Автоматический, Индуктивный]
Ток	Измерительный ток [2 А, 100 мА, 10 мА]

Клавиши:

ТАБУЛЯТОР	Выбор параметра для настройки.
ВВЕРХ / ВНИЗ	Настройка параметра.
TEST	Запуск измерения сопротивления.

Схема подключения при измерении сопротивления

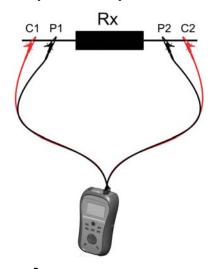


Рисунок 6.3 Схема подключения при измерении сопротивления

Процедура измерения сопротивления:

- > Выберите функцию СОПРОТИВЛЕНИЕ.
- > Установите параметры измерения (режим и измерительный ток).
- > Установите предельные значения (опция). (См. раздел *Error! Reference* source not found. Настройка предельных значений).
- Подключите объект измерений к прибору (см. Рисунок 6.3).
- > Нажмите клавишу TEST для запуска измерения.

- » Повторно нажмите клавишу TEST для остановки измерения (не используется в однократном режиме).
- > Сохраните результат, нажав клавишу МЕМ (опция).

Рисунок 6.4: Примеры результата измерения сопротивления

Примечание:

 До начала измерения принимайте во внимание все отображаемые предупреждения!

6.2.1 Однократный режим

В однократном режиме производится однократное двунаправленное измерение. Прибор измеряет сопротивление в обоих направлениях (исключая термоэдс).

Основной результат отображается на дисплее как среднее ($R = \frac{R_{+} + R_{-}}{2}$).

График I/t при однократном измерении

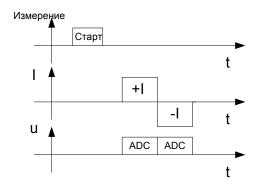


Рисунок 6.5: Однократный режим

Примечание:

- Однократный режим может быть, главным образом, использован для измерений сопротивления:
 - ➤ Реле:
 - Переключателей;
 - > Разъемов;
 - Электрических шин;
 - Соединений кабелей распределения мощности;
 - > Сварных соединений.

6.2.2 Непрерывный режим

В непрерывном режиме проводится непрерывное двунаправленное измерение. Прибор измеряет сопротивление в обоих направлениях (исключая термоэдс) и повторяет измерения до тех пор, пока не будет нажата клавиша TEST. Основной результат отображается на дисплее как среднее значение последнего двунаправленного измерения ($R = \frac{R_+ + R_-}{2}$).

Измерение запускается и останавливается пользователем.

График I/t при непрерывном измерении

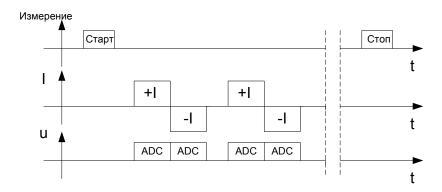


Рисунок 6.6: Непрерывный режим

Примечание:

 Измерение в непрерывном режиме особенно полезно при поиске неисправностей.

6.2.3 Автоматический режим

В автоматическом режиме производится однократное двунаправленное измерение. Прибор измеряет сопротивление в обоих направлениях (исключая термоэдс) и запускает однократное измерение каждый раз, когда выходы Р1, Р2, С1 и С2 подключаются к объекту измерений. Основной результат отображается на дисплее как среднее значение последнего двунаправленного измерения $(R = \frac{R_+ + R_-}{2})$.

Чтобы выполнить следующее измерение, разорвите измерительную цепь и снова подключите измерительные провода к объекту измерений.

График I/t при автоматическом измерении

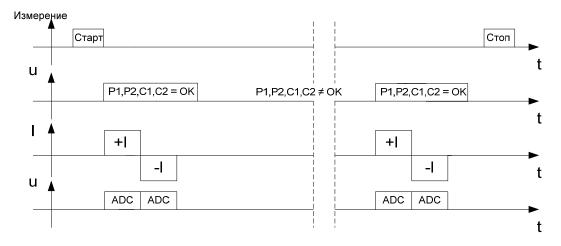


Рисунок 6.7: Автоматический режим

Примечание:

□ Автоматический режим рекомендуется использовать для измерений сопротивления электрических шин.

Примечание относительно термоэдс:

□ Соединение между двумя различными металлическими поверхностями генерирует напряжение из-за разницы температур (термопара). Прибор MicroOhm 2A исключает эффект термоэдс, благодаря измерению сопротивления в обоих направлениях (I+ и I-).

6.2.4 Индуктивный режим

В индуктивном режиме производится однократное однонаправленное измерение. Данный режим предназначен для измерения сопротивления индуктивных объектов. В зависимости от размера индуктивного объекта, время измерений может быть очень коротким для малых объектов и очень долгим для больших объектов с высокой индуктивностью.

Чтобы протекал желаемый испытательный ток (для проведения процедуры измерения), должно выполняться следующее условие для энергии: $W = 1/2 \times L \times I^2$.

График I/t при индуктивном измерении

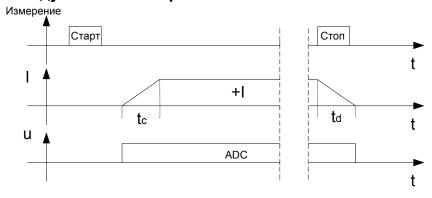


Рисунок 6.8: Индуктивный режим

- tc время заряда (зависит от размера индуктивного объекта).
- **t**d время разряда.

Примечание:

- Индуктивный режим может быть, главным образом, использован для измерений сопротивления:
 - Обмоток двигателей и генераторов;
 - > Силовых трансформаторов;
 - Силовых индукторов;
 - Проводов и кабелей.

Предупреждения:

- Не прикасайтесь к объекту измерений во время самого измерения и до момента его полного разряда! Существует опасность поражения электрическим током!
- □ При проведении измерения сопротивления на индуктивном объекте автоматический разряд объекта после завершения измерения может занять некоторое время!
- □ При проведении измерения на индуктивном объекте на измерительных клеммах может присутствовать опасное напряжение!

6.3 Напряжение ИСКЗ

В данной функции проводится непрерывное измерение напряжения и частоты вокруг разъема С1, Р1 – С2, Р2. Напряжение и частота, измеренные в функции НАПРЯЖЕНИЕ ИСК3, могут быть сохранены в памяти прибора.

Схема подключения при измерении напряжения

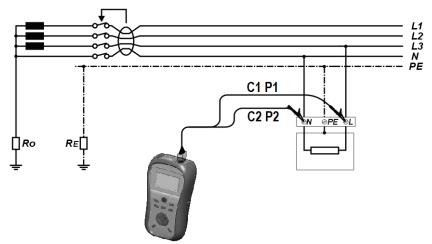


Рисунок 6.9: Схема подключения при измерении напряжения

Процедура измерения напряжения:

- » Выберите функцию НАПРЯЖЕНИЕ ИСК3.
- > Подключите измерительный кабель к прибору.
- Подсоедините измерительные наконечники или зажимы типа «крокодил» к клеммам С1, Р1 и С2, Р2 и подключите их к точкам измерения (см. Рисунок 6.9).
- Сохраните результат, нажав клавишу МЕМ (опция).



Рисунок 6.10: Результат измерения напряжения

7 Работа с результатами

7.1 Организация памяти

После завершения измерения результаты, подрезультаты и параметры измерения могут быть сохранены во флэш-память прибора.

7.2 Структура данных

Внутренняя память прибора разделена на 3 уровня, каждый из которых содержит 199 ячеек. Количество измерений, которое может быть сохранено в одной ячейке, не ограничено.

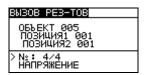


Рисунок 7.1: Поля структуры данных и измерений

Поле структуры данных

вызов рез-тов	Операция меню памяти
ОБЪЕКТ 005 ПОЗИЦИЯ1 001 ПОЗИЦИЯ2 001	Поле структуры данных
ОБЪЕКТ 005	□ 1^{ый} уровень: ОБЪЕКТ : Название ячейки по умолчанию (объект и его последовательный номер).
ПОЗИЦИЯ1 001	□ 2 ^{ой} уровень: Количество результатов:
ПОЗИЦИЯ2 001	□ 3 ^{ий} уровень: Количество результатов:
Поле измерений	
>N₂: 4/4	Номер выбранного результата измерения / Количество всех сохраненных результатов для выбранной ячейки.
напряжение	Тип сохраненного результата в выбранной ячейке.

7.3 Сохранение результатов измерения

После завершения измерения результаты и сопутствующие параметры готовы к сохранению (в поле сообщений отображается символ .). Нажав клавишу **МЕМ**, пользователь может сохранить результаты в памяти прибора.

Рисунок 7.2: Меню сохранения результатов

FREE: 100.0% Память, доступная для сохранения результатов.

Клавиши в меню сохранения результатов – поле структуры данных:

ТАБУЛЯТОР	Выбор элемента структуры (Объект / Поз1 / Поз2).		
ВВЕРХ / ВНИЗ	Выбор номера выбранного элемента структуры (от 1 до 199).		
MEM	Сохранение результата измерения в выбранную ячейку и возврат в меню измерений.		
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.		

Примечания:

- По умолчанию прибор предлагает сохранить результат в последнюю выбранную ячейку.
- □ Если Вы хотите сохранить результат в ту же ячейку памяти, что и предыдущий, дважды нажмите клавишу **МЕМ**.

7.4 Вызов результатов измерения

Находясь в главном меню функций, когда нет результатов, доступных для сохранения, нажмите клавишу **МЕМ** или выберите опцию **ПАМЯТЬ** в меню **НАСТРОЙКИ**.

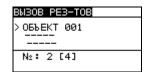


Рисунок 7.3: Меню вызова – выбрано поле структуры данных

Рисунок 7.4: Меню вызова – выбрано поле измерений

Клавиши в меню вызова результатов (выбрано поле структуры данных):

ТАБУЛЯТОР	Выбор элемента структуры (Объект / Поз1 / Поз2).		
ВВЕРХ / ВНИЗ	Выбор номера выбранного элемента структуры (от 1 до 199).		
MEM	Вход в поле измерений.		
TEST / ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню.		

Клавиши в меню вызова результатов (выбрано поле измерений):

ВВЕРХ / ВНИЗ	Выбор сохраненного результата.		
ТАБУЛЯТОР	Возврат в поле структуры данных.		
MEM	Просмотр выбранного результата измерения.		
TEST / ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню.		

Рисунок 7.5: Пример вызова результата измерения

Клавиши в меню вызова результатов (отображение результата измерения):

вверх / вниз	Отображение ячейки.	результатов	измерений	для	выбранной
MEM	Возврат в поле	измерений.			
TEST / ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в осно	овное меню.			

7.5 Удаление сохраненных результатов

7.5.1 Полная очистка памяти

Выберите опцию **ОЧИСТКА ПАМЯТИ** в меню **ПАМЯТЬ**. При этом на дисплее отобразится предупреждение.

Рисунок 7.6: Полная очистка памяти

Клавиши в меню очистки памяти:

ТАБУЛЯТОР	Выбор ДА или НЕТ.	
TEST	Подтверждение полной очистки содержимого памяти (если было выбрано ДА). Выход без изменений (если было выбрано НЕТ).	
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.	

Рисунок 7.7: Процесс очистки памяти

7.5.2 Удаление результата(-ов) в выбранной ячейке

Выберите опцию УДАЛЕНИЕ РЕЗУЛЬТАТОВ в меню ПАМЯТЬ.

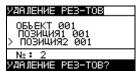


Рисунок 7.8: Меню удаления результатов (выбрано поле структуры данных)

Клавиши в меню удаления результатов (выбрано поле структуры данных):

ТАБУЛЯТОР	Выбор элемента структуры (Объект / Поз1 / Поз2).		
ВВЕРХ / ВНИЗ	Выбор номера выбранного элемента структуры (от 1 до 199).		
TEST	Вход в диалоговое окно для подтверждения удаления всех результатов для данной ячейки и ее подэлементов.		
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.		
MEM	Вход в поле измерений для удаления отдельных измерений.		

Клавиши в диалоговом окне для подтверждения удаления результатов для выбранной ячейки:

TEST	Удаление всех результатов для выбранной ячейки.		
ВВЕРХ / ВНИЗ ТАБУЛЯТОР / МЕМ	Возврат в поле структуры данных без изменений.		
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.		

7.5.3 Удаление отдельных результатов

Выберите опцию УДАЛЕНИЕ РЕЗУЛЬТАТОВ в меню ПАМЯТЬ

Рисунок 7.9: Меню удаления отдельных результатов (выбрано поле измерений)

Клавиши в меню удаления результатов (выбрано поле структуры данных):

ТАБУЛЯТОР	Выбор элемента структуры (Объект / Поз1 / Поз2).		
ВВЕРХ / ВНИЗ	Выбор номера выбранного элемента структуры (от 1 до 199).		
MEM	Вход в поле измерений.		
TEST / ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню.		

Клавиши в меню удаления результатов (выбрано поле измерений):

ВВЕРХ / ВНИЗ	Выбор измерения.				
TEST	Вход в диалоговое окно для подтверждения удаления				
	отдельного результата.				
ТАБУЛЯТОР	Возврат в поле структуры данных.				
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.				

Клавиши в диалоговом окне для подтверждения удаления отдельного результата (ов):

TEST	Удаление выбранного результата измерения.		
ВВЕРХ / ВНИЗ ТАБУЛЯТОР / МЕМ	Возврат в поле измерений без изменений.		
ПЕРЕКЛЮЧАТЕЛЬ ФУНКЦИЙ	Возврат в основное меню без изменений.		

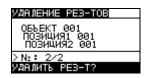


Рисунок 7.10: Диалог для подтверждения

8 Передача данных на ПК

Прибор поддерживает возможность коммуникации с ПК посредством специального программного обеспечения HVLink PRO. Могут быть выполнены следующие действия:

Сохраненные результаты могут быть загружены и сохранены на ПК.

ПО HVLink PRO автоматически распознает подключенный прибор и позволяет осуществить передачу данных между прибором и ПК.

Прибор позволяет осуществлять коммуникацию с ПК посредством интерфейса USB или RS 232.

Прибор автоматически устанавливает режим передачи данных, в зависимости от распознанного интерфейса. Интерфейс USB обладает высшим приоритетом.

Процесс передачи сохраненных данных:

- Коммуникация посредством RS 232: подключите последовательный порт ПК к разъему RS 232 прибора с помощью серийного кабеля PS/2 - RS 232
- > Коммуникация посредством USB: подключите порт USB ПК к разъему USB прибора посредством интерфейсного кабеля USB.
- Включите ПК и прибор.
- > Запустите ПО HVLink PRO.
- > ПК и прибор автоматически распознают друг друга.
- > Прибор готов к передаче данных на ПК.

Примечание:

□ Перед использованием интерфейса USB установите на Вашем ПК USB драйвера (если не установлены). Обратитесь к руководству по установке USB драйверов, доступному на прилагаемом компакт-диске.

9 Обслуживание

Неуполномоченные лица не имеют права вскрывать прибор MicroOhm 2A. Кроме батареи, в приборе нет частей и деталей, которые пользователь может заменить самостоятельно.

Предупреждение:

□ Перед тем как открыть крышку отсека для батарей, отсоедините все измерительные провода и выключите прибор!

9.1 Чистка

Корпус прибора не требует специального обслуживания. Для чистки поверхности прибора используйте мягкую материю, слегка увлажненную мыльной водой или спиртом. Оставьте прибор до полного высыхания.

Предупреждения:

- □ Не используйте жидкости на основе бензина или углеводорода!
- Не проливайте жидкость на прибор!

9.2 Периодическая калибровка

Для обеспечения технических характеристик, приведенных в данном руководстве, необходимо подвергать прибор регулярной калибровке. Рекомендуется ежегодная калибровка измерительного прибора. Калибровка может выполняться только уполномоченным персоналом. Для получения более подробной информации, пожалуйста, обратитесь к Вашему дистрибьютору.

9.3 Ремонт

Для ремонта прибора во время или по истечении срока гарантии обратитесь к Вашему дистрибьютору.

10 Технические характеристики

10.1 Сопротивление

Измер. ток	Диапазон измерений	Разрешение	Погрешность	
	0.000 9.999 мОм	1 мкОм		
2 A	10.00 99.99 <i>мОм</i>	10 <i>мкОм</i>		
	100.0 999.9 <i>мОм</i>	100 мкОм		
	0.00 99.99 мОм	10 <i>мкОм</i>		
100 MA	100.0 999.9 <i>мОм</i>	100 <i>мкОм</i>		
100 MA	1.000 9.999 <i>Ом</i>	1 мОм	\pm (0,0025 х R _{изм} + 2 емр)	
	10.00 19.99 <i>Ом</i>	10 мОм		
	0.0 999.9 мОм	100 <i>мкОм</i>		
10 MA	1.000 9.999 <i>Ом</i>	1 мОм		
TO MIA	10.00 99.99 <i>Ом</i>	10 мОм		
	100.0 199.9 <i>Ом</i>	100 мОм		
	R _{изм.} – измеренное значение сопротивления			
емр – единица младшего разряда				

Таблица 10.1: Диапазон и погрешность при измерении сопротивления

Погрешность измерительного	тока	±10 % (сглаженный постоянный ток)
Длительность измерения		1 сек (однократный режим)
Метод измерения		4-проводное измерение

Примечания:

- □ Указанные погрешности приведены для нормальных (рекомендованных) условий окружающей среды, для прямых и обратных измерений.
- □ При индуктивном режиме, в случае если на объекте измерений присутствует ЭДС, может возникнуть дополнительная неустановленная погрешность.
- □ Дополнительная погрешность при эксплуатации прибора в условиях окружающей среды, отличных от рекомендованных (в настоящем руководстве указана для каждой функции), составляет максимально ±0,1 % от измеренного значения + 1 ед.мл.раз., если не указано иначе для определенных функций.

Подавление шума (50/60 Гц) на потенциальных проводах Р1 - Р2:

Изм. ток	Макс. уровень шума	Дополнительная погрешность
2 A	1.4 Аскз (R _x < 500 мОм)	
100 мА	70 м <i>Аск</i> з (R _x < 10 Ом)	≤ 0.5 %
10 мА	7 м <i>Аск</i> з (R _x < 100 Ом)	

10.2 Параметры измерения

Измер. ток:	2 A	100 мА	10 мА
Макс. вых.			
мощность:	4 Bm	0,2 <i>Bm</i>	20 мВт
Вых. напряжение:	Макс. 9 <i>В пост. тока</i>		
Пределы:	1 мкОм 199.9 Ом		

Таблица 10.2: Параметры измерений

10.3 Напряжение и частота

10.3.1 Напряжение

Диапазон измерений (В)	Разрешение (В)	Погрешность	
0.0 49.9	0.1	±(0.02 v II ± 2.04p)	
50 550	1	±(0,02 x U _{изм} + 2 емр)	
U _{изм.} – измеренное значение напряжения			

Тип результата......ИСКЗ (истинное среднеквадратическое значение) Номин. диапазон частоты...... 0 Гц, 14 ... 500 Гц

10.3.2 Частота

Диапазон измерений (В)	Разрешение (В)	Погрешность	
10.0 99.9	0.1	±(0.002 v.f. ± 1.040)	
100 500	1	±(0,002 x f _{изм} + 1 емр)	
f _{изм.} – измеренное значение частоты			

Номин. диапазон напряжения 10 ... 550 В

10.4 Общие характеристики

Состояние незанятости > 25 часов Измерения > 800 измерений при нагрузке 500 мОм измерений 15 сек. Вх. напряжение адаптера питания 12 В ± 10 % Вх. ток адаптера питания макс. 400 мА Ток заряда батареи 250 мА (регулируется внутренней цепью) Категория перенапряжения КАТ III / 600 В; КАТ IV / 300 В Категория перенапряжения 2 Степень защиты IP 40 Дисплей 128 × 64 пикс. матричный дисплей, с подсветкой Размеры (ш × в × г) 14 см × 8 см × 23 см Вес 0.8 кг, без принадлежностей и батарей Рекомендованные условия: 15 °C ± 5 °C Диапазон влажности 40 % 70 % Условия работы: 40 % 70 % Диапазон рабочих температур. 0 °C 40 °C Макс. относит. влажность 95 % (0 °C 40 °C), без конденсата Условия хранения: -20 °C +70 °C Макс. относит. влажность 90 % (-10 °C +40 °C) Высота над уровнем моря до 2000 м Интерфейс RS232 115200 бит/с, 1 стартовый бит, 8 битов информации, 1 стоповый бит Разъем RS232 Разъем PS/2, женский	Напряжение питания
Ток заряда батареи	Состояние незанятости
Класс защиты двойная изоляция Степень защиты от загрязнения 2 Степень защиты 1P 40 Дисплей 128 × 64 пикс. матричный дисплей, с подсветкой Размеры (ш × в × г) 14 см × 8 см × 23 см Вес 0.8 кг, без принадлежностей и батарей Рекомендованные условия: Температурный диапазон 25 °C ± 5 °C Диапазон влажности 40 % 70 % Условия рабочих температур 0 °C 40 °C Макс. относит. влажность 95 % (0 °C 40 °C), без конденсата Усповия хранения: Температурный диапазон −20 °C +70 °C Макс. относит. влажность 90 % (-10 °C +40 °C) Высота над уровнем моря до 2000 м Интерфейс RS232 115200 бит/с, 1 стартовый бит, 8 битов информации, 1 стоповый бит Разъем RS232 Разъем PS/2, женский Интерфейс USB 256000 бит/с Разъем USB тип В Память 1500 ячеек памяти (512 кБ) Ошибка часов реального времени ± 50 частей на миллион	
Температурный диапазон	Класс защиты
Диапазон влажности	
Макс. относит. влажность 95 % (0 °C 40 °C), без конденсата Условия хранения: -20 °C +70 °C Макс. относит. влажность 90 % (-10 °C +40 °C) 80 % (40 °C 60 °C) Высота над уровнем моря до 2000 м Интерфейс RS232 115200 бит/с, 1 стартовый бит, 8 битов информации, 1 стоповый бит Разъем RS232 Разъем PS/2, женский Интерфейс USB 256000 бит/с Разъем USB тип В Память 1500 ячеек памяти (512 кБ) Ошибка часов реального времени ± 50 частей на миллион	Диапазон влажности
Макс. относит. влажность	Макс. относит. влажность 95 % (0 °C 40 °C), без конденсата
Интерфейс RS232	Макс. относит. влажность
информации, 1 стоповый бит Разъем RS232	Высота над уровнем моря до 2000 м
Интерфейс USB256000 бит/с Разъем USBтип В Память1500 ячеек памяти (512 кБ) Ошибка часов реального времени± 50 частей на миллион	
	Разъем RS232
, , , , , , , , , , , , , , , , , , , ,	Макс. сопротивление проводов всего 100 мОм (С1 и С2)