СОДЕРЖАНИЕ

1. ВВЕДЕНИЕ	3
2. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ	3
3. ПРИНЦИП ДЕЙСТВИЯ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	3
4. КОНСТРУКЦИЯ И ПРАВИЛА РАБОТЫ С МОСТОМ МЕП – 5СА	5
5. КОМПЛЕКТ ПОСТАВКИ И МАРКИРОВКА	15
6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	16
7. ТИПИЧНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ	17
8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	19
9. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВАНИЯ	19
10. ГАРАНТИИ ИЗГОТОВИТЕЛЯ	19
11. СВИДЕТЕЛЬСТВО О ПОВЕРКЕ	20

1. ВВЕДЕНИЕ

Настоящее руководство по эксплуатации содержит сведения, необходимые для правильной и безопасной эксплуатации моста переменного тока высоковольтного **МЕП-5СА**. Эти сведения включают также информацию о назначении и области применения моста, его технических характеристиках, устройстве и принципе действия, подготовке моста к работе, порядке работы и техническому обслуживанию.

2. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- 2.1. Мост МЕП-5СА (далее мост) предназначен для измерения в автоматическом режиме электрической емкости (C_x) и тангенса угла диэлектрических потерь ($tg\delta$), электрического напряжения (U) и частоты переменного тока (f). Область применения контроль изоляции и измерение параметров электротехнического оборудования по «прямой» и «перевернутой» схемам измерения. Мосты МЕП-5СА рассчитаны на эксплуатацию в производственных помещениях, стационарных и передвижных лабораториях.
- 2.2. Конструкция моста обеспечивает возможность работы, как по **«прямой»,** так и по **«перевернутой»** схемам измерений.
- 2.3. Мост изготовлен в исполнении, отвечающем требованиям ГОСТ 22261 для электронных измерительных приборов.
 - 2.4. Нормальные условия применения моста:
 - температура окружающего воздуха (20 ± 5) ⁰C;
 - − относительная влажность воздуха до 80% при температуре 25 °C;
 - атмосферное давление, мм рт. ст. не более, % 80.
 - 2.5. Рабочие условия применения:
 - температура окружающего воздуха (20 ± 20) ⁰C;
 - относительная влажность воздуха до 80% при температуре 25 ⁰C.
 - атмосферное давление, мм рт. ст. не более, % 80
 - 2.6. Источник питания должен соответствовать следующим требованиям:
- номинальное напряжение сети питания синусоидальное переменное (220 \pm 22) В частотой (50 \pm 1) Гц или постоянное 12 В;

3. ПРИНЦИП ДЕЙСТВИЯ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

В основе принципа действия моста лежит уравновешивание ветвей модифицированной схемы Шеринга, в которой в качестве двух низковольтных плеч использован электромагнитный компаратор токов (КТ).

КТ представляет собой экранированный дифференциальный трансформатор, состоящий из трех обмоток с тесной индуктивной связью. КТ содержит две обмотки W_X и W_0 , через которые протекают сравниваемые токи (ток в цепи эталонного конденсатора и ток в цепи объекта измерений), и обмотку W_Y , которая служит для выделения сигнала неравновесного состояния.

Изменение чувствительности моста осуществляется переключением числа витков обмотки W_X , а уравновешивание в пределах одного поддиапазона - переключением числа витков обмотки W_0 . Процесс работы моста полностью автоматизирован.

3.1. Технические характеристики

3.1.1. Диапазон измеряемых емкостей:

- при работе с внешним эталонным конденсатором, пФ 20 ... 10^6 ; - при работе со встроенным эталонным конденсатором, пФ 20 ... 10^5 .

При измерении диапазон измеряемых значений емкостей разбивается на четыре поддиапазона (далее п/д) в ручном или автоматическом режиме:

1-й п/д - от $C_0/10$ до $C_0 \times 10$;

2-й п/д - от $C_0 \times 10$ до $C_0 \times 100$;

3-й п/д - от $C_0 \times 100$ до $C_0 \times 1000$;

4-й п/д - от $C_0 \times 1000$ до $C_0 \times 10000$;

где C_0 – значение емкости эталонного конденсатора, пФ.

- 3.1.2. Диапазон измеряемых значений тангенса угла потерь $tg\delta$ 1·10⁻⁴... 1,0
- 3.1.3. Номинальная частота рабочего напряжения, Гц 48,8 61,2
- 3.1.4. Наибольшее рабочее напряжение, измеряемое мостом, определяется параметрами используемого эталонного конденсатора. При работе со встроенным эталонным конденсатором наибольшее рабочее напряжение составляет 10 кВ.
- 3.1.5. **Схема замещения объекта измерений** двухэлементная параллельная.
- 3.1.6. *Подключение объекта измерений* двух- или трехзажимное по «прямой» или «перевернутой» схеме.
- 3.1.7. **Характеристики эталонного конденсатора**. При измерениях может использоваться встроенный или внешний эталонный конденсатор. Диапазон допустимых значений емкости внешнего эталонного конденсатора от 10 пФ до 10000 пФ. Значение емкости эталонного конденсатора встроенного в мост № ______ составляет

- 3.1.8. Диапазон допустимых значений силы тока в цепи эталонного конденсатора от 10 мкА до 10 мА.
- 3.1.9. Диапазон допустимых значений силы тока в цепи объекта измерений –от 0,5 мкА до 0,5 А.
- 3.1.10. Полное время измерения, включая выбор пределов, составляет не более 14 секунд. В режиме усреднения результатов время первого измерения составляет не более 14 сек, а каждое последующее не более 7 сек.
- 3.1.11. Степень защиты оболочек от проникновения пыли и влаги IP30 по ГОСТ 14254.
- 3.1.12. Электропитание моста осуществляется от: встроенного аккумулятора, сети переменного тока 220 В, либо сети постоянного тока 12 В.
- 3.1.13. Мощность, потребляемая мостом, при работе или зарядке аккумулятора не более 15 Вт.
- 3.1.14. Результаты измерений могут быть сохранены в энергонезависимой памяти моста. Предусмотрена возможность просмотра сохраненных результатов.
 - 3.1.15. Срок службы моста (без учета аккумулятора) не менее 8 лет.

Средний срок службы аккумулятора – не менее 3 лет.

3.1.16. Масса, кг:

измерительного блока5,2блока управления0,5устройства зарядного0,35

3.1.17. Габаритные размеры, мм:

измерительного блока 350×210×80

блока управления 160х135х30 зарядно-питающего устройства 175х80х35

3.1.18. Время работы моста от полностью заряженного аккумулятора не менее 12 часов.

3.2. Погрешности измерений и разрешающая способность

3.2.1. Пределы допускаемых значений основной относительной погрешности измерения емкости при работе с внешним эталонным конденсатором δ_{C} , в процентах:

Пределы допускаемых значений основной относительной погрешности измерения емкости при работе со встроенным эталонным конденсатором δ_{C} , в процентах:

$$\pm (0,1 + 10^{N-4} \cdot C_o/C_x)$$
 при 0,0001< $tg\delta_x \le 0,03$;
 $\pm (0,2 + 10^{N-4} \cdot C_o/C_x)$ при 0,03 < $tg\delta_x \le 0,1$; (2)
 $\pm (0,6 + 10^{N-4} \cdot C_o/C_x)$ при 0,1 < $tg\delta_x \le 0,3$;
 $\pm (1,6 + 10^{N-4} \cdot C_o/C_x)$ при 0,3 < $tg\delta_x \le 1,0$;

где C_o – значение эталонной емкости; N – номер поддиапазона.

3.2.2. Пределы допускаемой абсолютной основной погрешности измерения тангенса угла потерь при работе с внешним эталонным конденсатором:

$$\pm (2.10^{-4} + 0.05 \cdot \text{tg}\delta_x),$$
 (3)

Пределы допускаемой абсолютной основной погрешности измерения тангенса угла потерь $\Delta tg\delta$ при работе со встроенным эталонным конденсатором:

$$\pm (3.10^{-4} + 0.05 \cdot ta\delta_x)$$
 (4)

- 3.2.3. Пределы допускаемых значений дополнительных погрешностей при измерениях емкости, в процентах, и тангенса угла диэлектрических потерь, вызванных отклонением температуры окружающего воздуха за пределы границ температурного диапазона (20 \pm 5) 0 C на каждые 10 0 C, равны пределам основных погрешностей δ_{C} и $\Delta tg\delta$, соответственно.
- 3.2.4. Пределы допускаемой относительной погрешности при измерении рабочего напряжения \pm 1,5%.
- 3.2.5. Пределы допускаемой абсолютной погрешности при измерении частоты рабочего напряжения \pm 0,1 Гц.
- 3.2.6. Метрологические характеристики МЕП-5СА гарантируются только при использовании кабелей, входящих в комплект поставки. Длина кабелей, подключенных к измерительным входам моста, не должна превышать 25 м.

4 КОНСТРУКЦИЯ И ПРАВИЛА РАБОТЫ С МОСТОМ МЕП- 5СА

4.1. Основные составные части МЕП- 5СА и их функции

Измерительный блок Блок управления Зарядно-питающее устройство 4.1.1. **Измерительный блок (БИ)** моста выполнен в виде компактного переносного модуля, имеющего прочный экранирующий корпус из дюралюминия. Внешний вид измерительного блока моста показан на рис. 4.1- 4.4.

Рис.4.1. Общий вид БИ.

Рис.4.2. Вид сверху.

- 1 высоковольтный вывод эталонного конденсатора
- 2 клемма для заземления прибора.

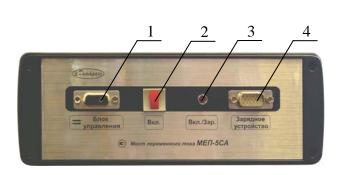


Рис.4.3. Вид спереди.

- 1 разъем оптической связи с БУ
- 2 выключатель питания
- 3 индикатор питания и зарядки
- 4 разъем подключения зарядного устройства

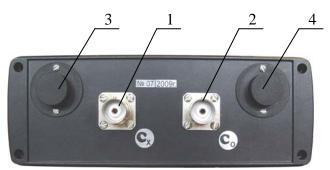


Рис.4.4. Вид сзади.

- 1 разъем подключения объекта
- 2 разъем подключения внешнего
- эталонного конденсатора
- 3 предохранитель цепи C_x (1A)
- 4 предохранитель цепи С₀ (0.25A)
- При работе с мостом по "перевернутой" схеме измерительный блок должен устанавливаться в огражденной зоне на электроизолирующем основании, рассчитанном на полное испытательное напряжение.
- При использовании встроенного в измерительный блок эталонного конденсатора действующее значение напряжения, подаваемое на него, не должно превышать 10 кВ.
- При использовании внешнего эталонного конденсатора необходимо соединить высоковольтный вывод встроенного конденсатора с клеммой для заземления прибора на корпусе измерительного блока.

4.1.2. **Блок управления (БУ)** представляет собой пульт, который находится в руках оператора, выполняющего измерения. Связь БУ и БИ осуществляется волоконно-оптическим кабелем, что обеспечивает безопасную работу оператора. БУ снабжен жидкокристаллическим индикатором и клавиатурой, имеющей 16 кнопок, внешний вид которых показан на рис. 4.5 – 4.7.

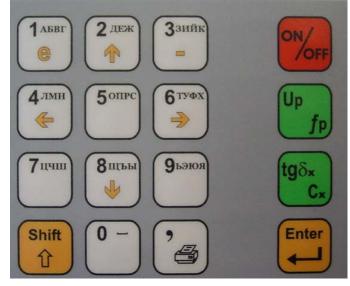


Рис. 4.5. Общий вид

Рис. 4.6. Клавиатура

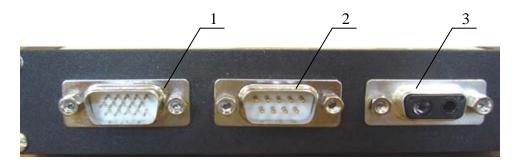


Рис. 4.7. Задняя панель БУ.

- 1 разъем подключения ЗПУ
- 2 разъем подключения ПК (RS-232)
- 3 разъем подключения волоконно-оптического кабеля

4.1.3. Зарядно-питающее устройство (ЗПУ) выполнено в виде отдельного компактного блока с двумя разъемами на торцевых панелях. На один разъем подводится питающее напряжение от сети, а со второго разъема подается напряжение, необходимое для работы блока управления или на измерительный блок для зарядки аккумулятора. Подключение к сети индицируется зажиганием светодиода красного цвета. Для включения питания БУ или заряда аккумулятора БИ необходимо нажать тумблер. При включении тумблера загорается светодиод зеленого цвета.

При подключении ЗПУ к сети переменного тока 220 В следует использовать розетку, имеющую защитное заземление.

При использовании моста в передвижной лаборатории питание блока управления можно осуществлять от бортовой сети автомобиля напряжением +12 В.

4.2. Подготовка моста к работе

4.2.1. Соедините составные части моста в соответствии с рис. 4.8

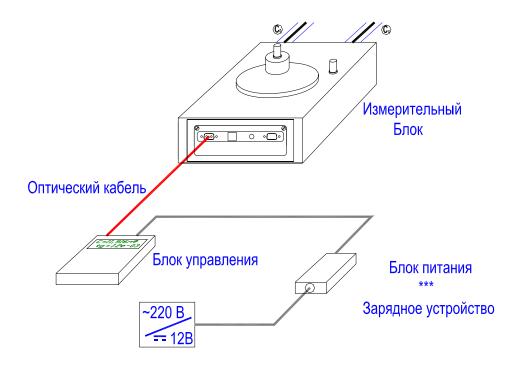
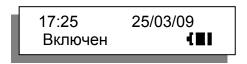



рис. 4.8

Нажмите кнопку **Вкл.** на измерительном блоке и кнопку **On/off** на блоке управления. Через несколько секунд на экране появится основное окно

При отключении измерительного блока в процессе работы, достаточно повторно нажать кнопку **On/off**.

Для выключения моста также служит кнопка **On/off** на блоке управления.

Прежде чем приступать к работе, необходимо убедиться, что аккумулятор заряжен, и произвести необходимые настройки моста.

При появлении на экране БУ мигающего символа аккумулятора с мостом можно работать 15 — 20 мин, а при появлении сообщения «Зарядите аккумулятор!», необходимо прекратить работу и произвести зарядку аккумулятора.

4.2.2. Заряд аккумулятора

Заряд аккумулятора производите при температурах выше 0°C.

Заряд можно производить от сети переменного напряжения 220 В частотой 50 Гц, или от сети постоянного тока напряжением 12 В (в автомобиле).

Для заряда аккумулятора подключите кабель ЗПУ с выходным разъемом DHS - 15 к разъему «зарядное устройство» на передней панели измерительного блока.

Сборку схемы производите при выключенном зарядно-питающем устройстве.

В процессе заряда аккумулятора индикатор «Вкл./Зар.» мигает. Прекращение мигания свидетельствует о завершении процесса заряда.

4.2.3. Настройка базовых параметров и режимов работы моста

Для входа в режим настройки моста нажмите клавишу **Enter**.

Меню настройки моста включает:

Nº	Строка меню	Содержание	
1	Ввод Со	Установка значений емкости	
		внешнего эталонного конденсатора, выбор	
		встроенного/внешнего эталонного конденсатора	
2	Накопление	Включение и выключение режима накопления,	
		задание числа измерений (N =2 – 50)	
3	Смена фазы	Включение и выключение режима измерения	
		со сменой фазы	
4	Запись	Включение и выключение режима сохранения	
		результатов измерений в архиве	
5	Температура	Температура Информационная строка	
6	Выбор поддиапазона Задание фиксированного поддиапазона измерений		
		или его автоматического выбора	
7	Название объекта	Ввод названия объекта измерений	
8	Дата/ Время	Задание даты и времени	
9	Запуск теста	Тестирование моста	
10	Тангенс в %	Включение и выключение опции вывода tgδ	
		в процентах	
11	Просмотр архива	Просмотр архива проведенных измерений	
12	Печать архива	Вывод результатов измерений на принтер	
12	Источник ВВН	Данная опция не используется	

После входа в режим настройки на табло появится одно из следующих ниже приглашений. Вход в подменю – клавишей Enter. Переключение режимов ВКЛ/ВЫКЛ производится клавишей On/Off.

Меню настройки включает следующие подменю:

1. Ввод Со

Подменю Ввод Со имеет две строки:

- Мера внешняя
- Мера внутр. вкл.

При включении моста система настроена на работу со встроенным (внутренним) эталонным конденсатором. Параметры этого конденсатора введены изготовителем прибора и корректировке пользователем не подлежат.

При использовании внешнего эталонного конденсатора установите курсор (<) на второй строке меню и нажмите клавишу **On/Off**. Строка перейдет в состояние **Мера внутр. выкл.**

Внимание! Отключение и последующее включение моста возвращает его в состояние работы со встроенным конденсатором.

Для ввода значений емкости и tgδ внешнего эталонного конденсатора установите курсор на первой строке и нажмите **Enter**. Введите требуемые значения с помощью

цифровых клавиш. Для ввода разделителя **e** нажмите одновременно **Shift** и **(1 e)**, для ввода минуса - **Shift** + **(3 -)**.

Перемещение курсора по окну производится клавишами с изображением стрелок при одновременном нажатии клавиши **Shift**. Для выхода в основное окно нажмите **Enter**.

Быстрый вход в подменю «Ввод C_0 » - клавиша 3.

2. Накопление

Здесь можно задать, или отключить режим измерения с накоплением и последующим усреднением результатов, а также ввести необходимое число измерений (от 2 до 50). Переключение режима производится клавишей **On/Off**, ввод числа - цифровыми клавишами. Для выхода в основное окно нажмите **Enter**.

В режиме измерения с накоплением последовательно производится заданное число измерений, и результаты усредняются. Кроме того, определяются средние квадратичные отклонения (СКО) для емкости (в процентах) и тангенса. После завершения измерений на экране индицируются значения емкости и тангенса. Для просмотра СКО нажмите клавишу со стрелкой, направленной вниз.

Режим измерения с накоплением может использоваться, в том числе и при включенном режиме измерения со сменой фаз (см. ниже).

Быстрый вход в подменю «Накопление» - клавиша 4.

3. Смена фазы

Для включения и отключения режима измерений со сменой фазы нажмите клавишу **On/Off**. Для выхода в основное окно нажмите **Enter**.

Использование данного режима целесообразно при измерениях в условиях сильных электромагнитных полей при невозможности экранирования объекта. Следует учитывать, что уменьшение влияния помех при применении режима смены фаз будет достигнуто только в том случае, если источник помех когерентен с источником испытательного напряжения. Для повышения эффективности компенсации влияния помех следует стремиться к тому, чтобы значения испытательного напряжения, устанавливаемые на первом и втором этапах режима, были практически равны.

Порядок работы в данном режиме следующий:

- Включите режим измерения со сменой фаз.
- Выйдите из меню, нажав Enter.
- Нажмите кнопку **Изм. U_p,f**_p и подайте испытательное напряжение, контролируя его значение на экране.
- Проведите первое измерение, нажав кнопку **Изм. tgδ,С**_х. Результаты первого измерения на экран не выводятся. По завершении измерения на экране появится надпись "Снимите напряж. Смените фазу!!! Установите напр. Запустите Изм. Сх"
- Уменьшите испытательное напряжение до минимального и отключите его. Измените фазу напряжения и повторите измерения.
- По окончании второго измерения рассчитанные параметры объекта будут выведены на экране.
- Для выхода из режима нажмите Enter.

4. Запись

Для включения и отключения режима сохранения результатов измерений нажмите клавишу **On/Off**. Для выхода в основное окно нажмите **Enter**.

5. Температура

При подключении к измерительному блоку датчика температуры, измеренное значение температуры будет выводиться в данной строке (устанавливается как дополнительная опция).

6. Выбор поддиапазона

При включении моста в нем устанавливается автоматический выбор поддиапазона измерений. Задание фиксированного поддиапазона требуется только при поверке (калибровке) прибора.

Для задания фиксированного поддиапазона после входа в этот раздел меню выберите необходимый режим клавишами со стрелками и нажмите **Enter**.

Внимание! После отключения моста данная опция не сохраняется.

Быстрый вход в подменю «Выбор поддиапазона» - клавиша 5.

7. Название объекта

В данном разделе может быть введено название объекта измерений. Для ввода названия следует многократно нажимать кнопки 0 – 9 до появления нужных буквенных символов. Перемещение курсора производится одновременным нажатием клавиши **Shift** и клавиши со стрелкой. Название объекта может содержать не более 14 символов. Для выхода в основное окно нажмите **Enter**. Удаление символа производится нажатием клавиши **On/Off**.

После ввода названия, оно будет присваиваться всем последующим измерениям при записи в архив.

Быстрый вход в подменю «Название объекта» клавиша 1.

8. Ввод даты и времени

Раздел используется для корректировки показаний внутренних часов реального времени прибора. Для корректировки войдите в раздел, задайте дату и время и нажмите **Enter**.

9. Запуск теста

Тестирование моста выполняется совместно с тестирующим устройством, не входящим в комплект поставки. Тестирующее устройство может быть поставлено по дополнительному заказу. Порядок работы при тестировании моста изложен в руководстве по эксплуатации тестирующего устройства.

10. Тангенс в %

Прибор позволяет выбрать индикацию tgδ в относительных единицах или в процентах. Включение и отключение опции вывода в процентах производится при входе в данное подменю с помощью клавиши **On/Off**. Для выхода в основное окно нажмите **Enter**.

11. Просмотр архива

Данный раздел позволяет просматривать сохраненные результаты, начиная с последнего по дате и времени. Сохранение измерений в архив происходит только при включенной опции «Запись». Архив рассчитан на сохранение 1000 результатов. При переполнении из архива удаляются самые старые по дате и времени результаты.

Информация выводится в следующем порядке:

- Время и дата измерения
- Наименование объекта
- Емкость объекта
- Тангенс угла диэлектрических потерь
- Напряжение в опыте
- Режим измерения (разовое, с накоплением, число измерений)
- CKO(C), %
- CKO(tg)

Быстрый вход в подменю «Архив» - клавиша 2.

12. Печать архива

Печать результатов измерений может осуществляться с помощью портативного термопринтера, не входящего в базовый комплект поставки. Принтер подключается к разъему RS-232 БУ.

Для вывода на печать нескольких результатов измерений из архива войдите в данный раздел, введите время и дату начала и конца периода, за который Вы хотите вывести результаты, и нажмите **Enter**.

Также возможны два других варианта печати результатов.

- 1. Вывод одного результата из архива. Выберите нужный Вам результат в разделе «Просмотр архива» и нажмите клавишу с изображением принтера.
- 2. Вывод результатов непосредственно после измерения. Нажмите клавишу с изображением принтера.

13. Источник ВВН

Данная опция, предусмотренная в универсальной программе проведения измерений с мостом, в настоящее время не используется.

4.3. Порядок работы с мостом

4.3.1. Мост МЕП-5СА может использоваться для измерений по «прямой» и «перевернутой» схемам, а также с применением как встроенного, так и внешнего эталонного конденсатора. Специфика подключения моста во всех четырех случаях описана ниже.

Условия работы 1:

Использование встроенного эталонного конденсатора C_0 Схема измерений — «прямая» Испытательное напряжение $U \le 10 \text{ kB}$

Последовательность операций

- 1. Соедините кабелем **К1** разъем C_x на задней стенке БИ с объектом испытаний (на стороне низкого напряжения).
- 2. Заземлите корпус БИ.
- 3. Подключите высокое напряжение к высоковольтному выводу встроенного эталонного конденсатора и объекту испытаний.

Схема подключения объекта см. рис. 4.9.

Схема измерений - «прямая»

Использование встроенного эталонного конденсатора С₀

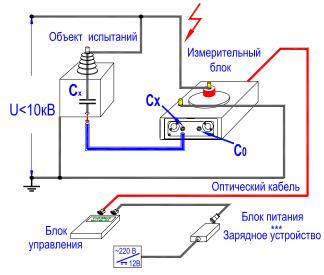


рис. 4.9

Условия работы 2:

Использование встроенного эталонного конденсатора **С**₀ Схема измерений – **«перевернутая»** Испытательное напряжение U ≤ 10 кВ

Последовательность операций

- Заземлите высоковольтный вывод встроенного в БИ эталонного конденсатора C₀.
 Провод заземления не должен касаться корпуса БИ.
- 2. Установите измерительный блок на изолирующую подставку, соответствующую испытательному напряжению.
- 3. Подключите провод высокого напряжения от источника напряжения (испытательного трансформатора) к клемме заземления на корпусе БИ.
- 4. Соедините разъем C_x на задней стенке БИ с объектом испытаний кабелем K1. Схема подключения объекта см. рис. 4.10

Схема измерений - «перевернутая»
Использование встроенного эталонного конденсатора Со
U мах - 10 кВ

Измерительный блок

Оптический кабель

Блок питания

Зарядное устройство

рис.4.10

Условия работы 3:

Использование внешнего эталонного конденсатора Со

Схема измерений - «прямая».

Испытательное напряжение определяется параметрами внешнего конденсатора и источника напряжения.

Последовательность операций

- 1. Соедините разъем **C**₀ на задней стенке БИ с низковольтным измерительным выводом внешнего эталонного конденсатора кабелем **K2**.
- 2. Соедините высоковольтный вывод встроенного конденсатора с клеммой заземления на корпусе БИ.
- 3. Соедините разъем C_x на задней стенке БИ с объектом испытаний кабелем K1.
- 4. Подключите провод от источника высокого напряжения к объекту испытаний и внешнему эталонному конденсатору.

Схема подключения объекта см. рис. 4.11

Схема измерений - «прямая». Использование внешнего эталонного конденсатора C_0 U определяется параметрами внешнего конденсатора

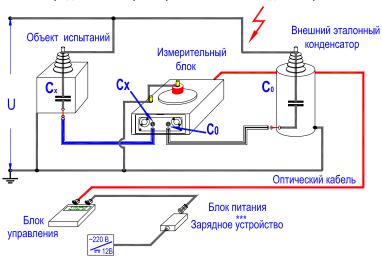


рис. 4.11.

Условия работы 4:

Использование внешнего эталонного конденсатора **С**₀

Схема измерений - «перевернутая»

Испытательное напряжение определяется параметрами внешнего конденсатора и источника напряжения.

Последовательность операций

- 1. Установите внешний эталонный конденсатор и измерительный блок моста на изолирующие подставки, соответствующие испытательному напряжению.
- 2. Соедините высоковольтный вывод встроенного конденсатора с клеммой заземления на корпусе БИ.
- 3. Подключите провод от источника высокого напряжения (испытательного трансформатора) к клемме заземления на корпусе БИ.
- 4. Заземлите высоковольтный вывод эталонного конденсатора.
- 5. Соедините разъем C_x на задней стенке БИ с объектом испытаний кабелем K1.
- 6. Соедините разъем **C**₀ на задней стенке БИ с низковольтным выводом внешнего эталонного конденсатора кабелем **K2**.

Кабели К1 и К2 в этом случае должны быть изолированы от земли!!!

Схема подключения объекта см. рис. 4.12

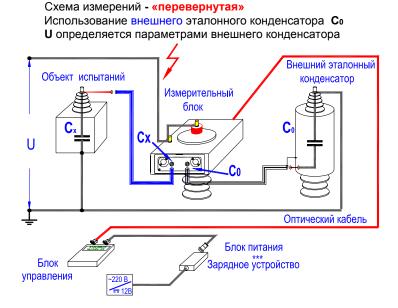


рис. 4.12

4.3.2. Порядок работы с мостом.

- 1. Соберите схему моста и схему измерений. Включите красной кнопкой БИ.
- 2. Включите мост кнопкой **On/Of** на БУ.
- 3. При необходимости войдите в меню режимов и установите необходимый режим. Для выхода из меню нажмите **Enter**.
- 4. Нажмите кнопку **Изм.** U_p, f_p и подайте испытательное напряжение, контролируя его значение на экране.
- 5. Проведите измерение, нажав кнопку **Изм.** $tg\delta$, C_x . По окончании измерения результаты будут выведены на экран.
- 6. Для выхода из режима нажмите Enter.

4.3.3. Чтение файла результатов испытаний из БУ в ПК

Запустите на ПК исполняемый файл HVLink.exe. Программа самостоятельно определит номер последовательного порта, к которому подключен БУ, и в строку состояния выведет сообщение "Установлена связь по СОМх". При отсутствии связи между ПК и БУ, на экране ПК появится окно с сообщением "Связь НЕ установлена". Следует устранить причину отсутствия связи и повторить запуск программы.

Для чтения архива задайте необходимое количество записей результатов (отсчет производится, начиная с последнего по дате и времени), выберите формат файла (Excel, или Word) и нажмите кнопку «чтение архива». При стоящей «галочке» файл читается в формате Excel.

После считывания результатов из БУ на экране ПК откроется стандартное диалоговое окно сохранения с предложением записать результаты в файл, имя которого является комбинацией слова **results** и текущей даты. По желанию оператора для сохраняемого файла может быть выбрано оригинальное имя.

Перед первым использованием ПК необходимо установить на нем программное обеспечение, которое входит в комплект поставки моста и передается на инсталляционном CD диске.

Для подключения ПК к мосту соедините разъем с надписью «RS 232» на панели БУ со свободным последовательным (COM) портом ПК интерфейсным кабелем, входящим в комплект поставки.

Подключение следует выполнять при отключенных от питающей сети ПК и БУ.. Невыполнение данного требования может привести к выходу аппаратуры из строя.

4.3.4. Установка программного обеспечения моста на ПК

Создайте в своем персональном компьютере директорию Bridge и перепишите в нее содержание аналогичной директории с инсталляционного CD диска.

4.3.5. Автономная работа с БУ

Просмотр результатов измерений, сохраненных в памяти БУ, можно производить не подключая измерительный блок.

Для просмотра результатов войдите в меню и выберите режим «Просмотр архива».

В начале просмотра на экран выводится последняя по дате и времени запись.

Используя клавиши (***
одной записи

вы можете просмотреть все окна, относящиеся к

Для листания записей архива необходимо использовать клавиши

Для ускоренного листания используйте клавиши

Для возврата в основное окно необходимо нажать клавишу

5. КОМПЛЕКТ ПОСТАВКИ и МАРКИРОВКА

5.1. Комплект моста соответствует перечню, приведенному в таблице 5.1

	таолица 5.1	
Наименование	Кол-во	Примечание
Блок измерительный (БИ)	1 шт.	
Блок управления (БУ)	1 шт.	
Зарядно-питающее устройство (ЗПУ)	1 шт.	
Кабель измерительный высоковольтный К1	1 шт.	12,0 м
Кабель измерительный К2	1 шт.	3,0 м
Провод переходной с зажимом типа	1шт.	
«крокодил»		
Кабель волоконно-оптический	1 шт.	4 м
Провод сетевой 220В	1шт.	1,8 м
Провод сетевой 12В	1шт.	1,8 м
Провод соединительный ЗПУ - БУ	1 шт.	1,8 м
Перемычка заземления	1 шт.	
Кабель интерфейсный	1 шт.	
Сумка укладочная для БИ и кабелей	1шт.	
Чемодан для БУ и ЗПУ	1шт.	
Руководство по эксплуатации	1 экз.	
Диск инсталляционный	1 шт.	
Паспорт	1 экз.	
Методика поверки	1 экз	

5.2. Маркировка

- 5.2.1. На блоках моста нанесена следующая маркировка: *Блок измерительный:*
 - товарный знак предприятия изготовителя;
 - заводской номер;
 - год изготовления;
 - знак утверждения типа
 - наименование и условное обозначение;

Блок управления:

- товарный знак предприятия изготовителя;
- знак утверждения типа.
- заводской номер;
- наименование и условное обозначение;

Зарядно-питающее устройство:

- товарный знак предприятия изготовителя;
- наименование и условное обозначение;
- 5.2.3. На транспортной таре нанесены информационные надписи и манипуляционные знаки.

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При работе с мостом обслуживающий персонал должен соблюдать общие требования по технической эксплуатации и технике безопасности при эксплуатации электрических приборов. Выполнять требования, установленные ГОСТ12.3.019-80, ГОСТ 30421-96, ГОСТ 12.007.2.0-75 по способу защиты человека от поражения электрическим током.

На всех стадиях испытаний и эксплуатации моста должно быть обеспечено соблюдение правил техники безопасности и выполнение инструкций по безопасному проведению каждого вида работ.

Выполняйте требования, указанные в документации на мост, испытательные устройства для измерения электроизоляционных характеристик твердых и жидких диэлектриков и другое оборудование, используемое совместно с мостом.

До включения напряжения присоедините клеммы заземления моста и заземляемые части другого используемого оборудования к контуру заземления. Работу с оборудованием проводите в соответствии с прилагаемыми к нему инструкциями по эксплуатации.

Персонал, проводящий измерения, должен пройти обучение и инструктаж в соответствии с правилами техники безопасности.

7. ТИПИЧНЫЕ НЕИСПРАВНОСТИ И МЕТОДЫ ИХ УСТРАНЕНИЯ

При появлении неисправности в работе Моста на экран БУ выводится соответствующее сообщение. Если сообщение содержит более 2-х строк и не помещается на экране БУ, необходимо использовать клавиши для просмотра его полного просмотра.

Текст сообщения или внешнее проявление неисправности	Вероятная причина неисправности	Рекомендуемые действия оператора
"Перегрузка на 4-ом поддиапазоне. Ток объекта больше допустимого значения!"	Значение тока объекта выше допустимого значения.	Убедитесь в правильности подключения оборудования и установки рабочего напряжения. Проверьте выполнение требований, изложенных в п.2
"Значение тока эталонного конденсатора меньше 2 мкА"	Неисправен эталонный конденсатор или неправильно введено значение его емкости. Не подано напряжение на эталонный конденсатор или значение напряжения недостаточно для обеспечения необходимого тока в цепи эталонного конденсатора (больше 2 мкА)	Убедитесь в правильности подключения оборудования и установки рабочего напряжения. Проверьте исправность внешнего эталонного конденсатора. Проверьте исправность предохранителей и, при необходимости, замените их. Проверьте правильность ввода параметров внешнего эталонного конденсатора.
"Превышено допустимое значение тока в цепи эталонного конденсатора"	Значение тока в цепи эталонного конденсатора выше допустимого.	Убедитесь в правильности подключения оборудования и установки рабочего напряжения. Обеспечьте выполнение требований, изложенных в разделе 2.4.
"Поддиапазон измерения не соответствует объекту. Включите автоматический выбор поддиапазона измерения"	Неправильно выбран поддиапазон измерений при его выборе вручную.	Если значение емкости измеряемого конденсатора неизвестно, рекомендуется установить выбор поддиапазонов "Автоматический".
"Зарядите аккумулятор!"	Аккумулятор полностью разряжен.	Зарядите аккумулятор.
"БУ не соответствует мосту"	Использование БУ и измерительного блока из разных комплектов мостов	Восстановите комплектность моста.

"Проверьте схему измерительной цепи. Повторите измерение" "Введите корректное значение С ₀	Неправильно подключено оборудование. Неисправны измерительные кабели. Введенное значение емкости C_0 равно нулю	Убедитесь в правильности подключения оборудования. Проверьте измерительные кабели Введите значение емкости эталонного конденсатора не равное нулю
"Нет связи с Измерительным блоком или разряжен аккумулятор"	Разряжен аккумулятор или неправильно выполнено подключение измерительного блока к ПК или БУ.	Зарядите аккумулятор. Проверьте и приведите в соответствие подключение Моста к ПК (БУ).
При поданном на измерительную схему напряжении, значения измеренного напряжения и частоты равны нулю.	Неправильно собрана измерительная схема, или вышел из строя предохранитель в канале "С ₀ " или неправильно введено значение С ₀ при использовании внешнего эталонного конденсатора.	Убедитесь в правильности подключения оборудования и установки рабочего напряжения. Замените предохранитель в канале "С ₀ " Измерительного блока. Введите паспортное значение внешнего эталонного конденсатора С ₀ .
При измерении емкости С и тангенса угла потерь tgδ объекта измерений результат существенно отличается от ожидаемого.	Неправильно собрана измерительная схема или вышел из строя предохранитель в канале "С _х "	Убедитесь в правильности подключения оборудования и установки рабочего напряжения. Замените предохранитель в канале "C _X "

8. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

К эксплуатации и обслуживанию моста должны допускаться лица, изучившие настоящее руководство по эксплуатации, а также "Правила устройства электроустановок".

Для поддержания работоспособности и исправности моста в течение срока службы необходимо:

- строго соблюдать график периодических поверок;
- поверку выполнять в соответствии с "Методикой поверки".

Поверка моста должна проводиться органами государственной метрологической службы или аккредитованными на право проведения поверки лабораториями.